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Web Appendix A: Data Preprocessing 

 

Overall data cleaning. Search data is typically noisy; therefore, we preprocessed the data 

to obtain better estimates of the model parameters. We took the following steps in the 

preprocessing: 

1. Removed non-fashion products (e.g. linen, towels) and kid’s apparel. These products 

constitute a small proportion of the data and are not the retailer's focus (95% of purchases 

are adult fashion products).  

2. Removed browsing sessions without product listing views (each product listing contains 

up to 96 products presented to the customer, see Figure 6 for the example). This could 

happen if the customer comes to the website from a third-party website and lands directly 

on the product page. These sessions do not represent the true customer search process at 

the retailer’s website and we are not able to recover the set of products from which the 

customer was choosing. 

3. Removed browsing sessions that have more than 50 pages viewed, products clicked or 

products purchased. 

4. Removed browsing sessions where customers were viewing product listings of size 

greater than 48. Our retailer allows the customer to view 48 or 96 products in one listing, 

most customers (and the default option is to view 48 products). 

5. Removed browsing sessions that have not clicked products after a page view and sessions 

that have clicked products before a page view. This implies we kept only sessions with 

the clean search process: the customer views the product page and selects a product to 

click on it. The alternative could happen if the customer found a product through an 
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alternative means (from a third-party website) and in this case, it is impossible to infer the 

set of products from which he or she was choosing. 

Selecting single-item orders. In the paper, we consider orders where the customer 

purchased at most one product. However, there are two additional steps used to obtain the 

representative data sample: 

1. Sessions without a purchase. After we selected transactions with only one item 

purchased, we randomly subsampled sessions without a purchase to preserve the relative 

purchase rate. 

2. Orders with one product but multiple sizes or several identical units. In this case, we split 

the order into several orders with the same search session, and only one unit was 

purchased, however, these orders could have different return outcomes. This approach 

allows us to keep more data and thus improve the estimation quality. Using alternative 

approaches does not lead to substantial changes. 

The preprocessing procedures do not change the main message of the paper and are 

aimed at obtaining a representative data sample, which would balance the quality and quantity of 

data. In practice, the retailer may implement different preprocessing procedures which could 

change the parameter values, but qualitative findings would remain similar. 

 

Web Appendix B: Deep-Learning Embeddings 

 

In the paper, we mentioned that during the estimation we used deep-learning product 

embeddings to address the issue of high dimensionality of the data. Our procedure for extracting 

the product embeddings could be summarized in the following steps: 
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1. Creating product base features: 

a. Combine product quantitative characteristics (category dummy, price, brand). 

b. Use ResNet model to generate product image embeddings (2048-dimensional 

vectors) and PCA transformation to extract 64 components. 

c. Concatenate (a) and (b). 

2. Computing aggregate product-level outcomes: 

a. Click rate crj – the ratio of clicks to views. 

b. Purchase rate prj – the ratio of sales to clicks. 

c. Return rate rrj – the ratio of returns to sales.  

3. Training the neural network to produce 7-dimensional product embeddings ej such that 

𝐞𝐞j′𝛃𝛃cr, 𝐞𝐞j′𝛃𝛃pr, 𝐞𝐞j′𝛃𝛃rr minimize the prediction error of log-ratio of crj, prj,  rrj respectively. 

These embeddings represent the product in terms of their three key characteristics, click 

rate, purchase rate, and return rate. There exist other ways to construct product embeddings, 

however, exploring these options goes beyond the scope of the paper. We leave this exercise to 

the retailer who may have different available data. We only note that this approach is sufficient to 

support the main message of the paper.  

 

Web Appendix C: Derivation of Expected Purchase Utility 

 

Without loss of generality, we drop all indices and subscripts in this section to preserve 

readability. In the section discussing the model, we wanted to find the expected utility of 

purchasing a product from the website. In this case, the customer knows the variables μ, ϵ and ξ 

and computes the expected utility in Equation 1 over ψ: 
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ω = 𝔼𝔼ψ[(μ + ξ + ϵ + ψ + R) ⋅ (μ + ξ + ϵ + ψ + R ≥ 0) − R|μ, ξ, ϵ] 

𝔼𝔼ψ[ζ ⋅ (ζ ≥ 0)|μ, ξ, ϵ] − R = σψ ⋅ T�
μ + ξ + ϵ + R

σψ
� − R (W1) 

where ζ|μ, ξ, ϵ~𝒩𝒩�μ + ξ + ϵ + R;σψ� and formula for the expectation of truncated normal 

distribution was used. 

 

Web Appendix D: Derivation of Reservation Utilities for Model with Product Returns 

 

In the original paper, Weitzman (1979) demonstrated that the reservation utility z for a 

product could be found from Equation W2 where we drop the individual i and produc j indices 

for compactness: 

 c = � (u − z)dF(u)
∞

z
 (W2) 

In the section discussing the model, we demonstrated that the return option changes the 

distribution of the reward and thus, in this case, we need to find the distribution of the expected 

purchase utility from Equation W1. Notice that before making a click, the customer observes 

only μ and ξ, therefore the randomness in Equation W1 comes from the post-click preferences 

shock ϵ: 

 
F(u) = ℙ[ω(ϵ) ≤ u|μ, ξ] = ℙ �σψ ⋅ T�

μ + ξ + ϵ + R
σψ

� − R ≤ u|μ, ξ�

= ℙ �μ� + ϵ + R ≤ σψT−1 �
R + u
σψ

� |μ, ξ� = Φ�σψT−1 �
R + u
σψ

� − μ� − R�
 (W3) 

where μ� = μ + ξ and was used that ϵ~𝒩𝒩(0;σϵ) 

Next, we plug-in the distribution from Equation W3 in Equation W2 and obtain: 

 

c =� �σψ ⋅ T�
μ� + t + R

σψ
� − R − z�dΦ(t)

∞

σψT−1�
R+z
σψ

�−μ�−R

=σψ � T�
μ� + R + t

σψ
� − T�

μ� + R + θ
σψ

�dΦ(t)
∞

θ

 (W4) 
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where we used the substitution z = T �μ�+R+θ
σψ

� − R 

 

Web Appendix E: Approximating the Solution to the Equation 

 

In the paper, we made an assumption that σϵ = 1. Thus, from Equation W4 it could be 

seen that the reservation utility is a function of three parameters: z∗ = f�μ� + R,σψ, c� =

f(x1, x2, x3). During the optimization algorithm – finding this function for each customer-product 

combination is not feasible as it involves many integration steps. 

To circumvent the computational burden, we used the trilinear interpolation technique. 

Specifically, for three-dimensional variables (x1, x2, x3), we constructed a grid of values and 

computed the exact reservation utilities for each element of the grid. Notice that in this case, the 

space of possible values of (x1, x2, x3) is divided into 3-dimensional cubes. For each of these 

cubes, we know the exact values of reservation utilities in eight vertices. For any vector within 

the cube, we approximate the reservation utility function f(x1, x2, x3) as: 

 ftrue(x1, x2, x3) ≃ fapprox(x1, x2, x3) 
= α0 + α1x1 + α2x2 + α3x3 + α4x1x2 + α5x2x3 + α6x1x3 + α7x1x2x3 

(W5) 

where we require ftrue(x1, x2, x3) = fapprox(x1, x2, x3) at the grid (or cube vertices) points. 

Because fapprox(x1, x2, x3) has eight parameters and eight constraints, the linear system has a 

unique solution for each cell. 

 

Web Appendix F: Derivation of Equivalent Set of Constraints on Model Parameters 

 

After combining Equations (4-7), we can compute the variable Wi. For compactness and 

without loss of generality, we drop the customer index i: 



Appendices: From Clicks to Returns  7 
 

 
 

 

W=𝕀𝕀 �ωb ≥ max
s=0..C

ωs� 𝕀𝕀[μb + ξb + ϵb + ψb ≤ −R]

×��𝕀𝕀 �zj+1 ≥ max
s=j+2..V

zs� 𝕀𝕀 �max
s=0..j

ωs < max
s=j+1..V

zs��
C−1

j=0

×𝕀𝕀 �max
s=0..C

ωs ≥ max
s=C+1..V

zs�

 (W6) 

 

Consider the part of the equation: 

 

P1=��𝕀𝕀 �zj+1 ≥ max
s=j+2..V

zs��
C−1

j=0

=��� 𝕀𝕀�zj+1 ≥ zs�
V

s=j+2

�
C−1

j=0

=𝕀𝕀 �zC ≥ max
s=C+1..V

zs��𝕀𝕀�zj ≥ zj+1�
C−1

j=1

 (W7) 

Notice that Equation W7 is a necessary condition for W = 1. Thus, we can assume that 

these inequalities hold in further derivations. Specifically, it follows that max
s=j+1..V

zs = zj+1 for j ≤

C and we can rewrite another part of the equation as: 

 

P2=�𝕀𝕀�max
s=0..j

ωs < max
s=j+1..V

zs�
C−1

j=0

= �𝕀𝕀�max
s=0..j

ωs < zj+1�
C−1

j=0

=��𝕀𝕀�ωs < zj+1�
j

s=0

C−1

j=0

= �𝕀𝕀�ωj < zC�
C−1

j=0

 (W8) 

Similarly, we find: 

 

P3=𝕀𝕀 �max
s=0..C

ωs ≥ max
s=C+1..V

zs� 𝕀𝕀 �ωb ≥ max
s=0..C

ωs�

=𝕀𝕀 �ωb ≥ max
s=C+1..V

zs��𝕀𝕀�ωj < ωb�
C

j=0

 (W9) 

Finally, after combining all equation for P1, P2 and P3 we obtain the simplified version of 

variable W: 
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W = ��𝕀𝕀�zj ≥ zj+1�

C−1

j=1

� 𝕀𝕀 �zC ≥ max
s=C+1..V

zs� ��𝕀𝕀�ωj ≤ min{zC,ωb}�
C−1

j=0

� 

 𝕀𝕀[ωC ≤ ωb]𝕀𝕀 �ωb ≥ max
s=C+1..V

zs� 𝕀𝕀[μb + ξb + ϵb + ψb ≤ −R] 

(W10) 

   
 

Web Appendix G: Derivation of Semi-Closed Form Likelihood 

 

As in the previous sections, we drop the customer-related index i for compactness. Recall 

the set of constraints that must be satisfied in order to observe a given customer sequence. 

 
W = ��𝕀𝕀�zj ≥ zj+1�

C−1

j=1

� 𝕀𝕀 �zC ≥ max
s=C+1..V

zs� ��𝕀𝕀�ωj ≤ min{zC,ωb}�
C−1

j=0

� 

 𝕀𝕀[ωC ≤ ωb]𝕀𝕀 �ωb ≥ max
s=C+1..V

zs� 𝕀𝕀[μb + ξb + ϵb + ψb ≤ −R] = 1 

(W11) 

where ωj is a function of unobserved to researcher shocks ξj and ϵj; zj is a function of 

unobserved to researcher shock ξj. Because we assumed that all shocks are independent, we can 

rewrite the probability as: 

 �WdF(𝛏𝛏, 𝛜𝛜,𝛙𝛙) = �W� dFξj�ξj�
V

j=1

�dFϵj�ϵj�
C

j=1

dFψb
(ψb) (W12) 

The distribution Fψb
(ψb) is known and because for independent variables holds F(ψ) =

F(ψ|ϵ) we can integrate out the variable ψb as only one constraint depends on it: 

 �𝕀𝕀[μb + ξb + ϵb + ψb ≤ −R] dFψb
(ψb) = 1 −Φ�−

R + μb + ξb + ϵb
σψb

� (W13) 

 Next, ξj: j = C + 1 … V appears only in two constraints that could be simplified to: 
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�𝕀𝕀�zC ≥ max
s=C+1..V

zs� 𝕀𝕀 �ωb ≥ max
s=C+1..V

zs� � dFξj�ξj�
V

j=C+1

=�𝕀𝕀�min{zC,ωb} ≥ max
s=C+1..V

zs� � dFξj�ξj�
V

j=C+1

= � �𝕀𝕀�min{zC,ωb} ≥ zj�dFξj�ξj�
V

j=C+1

= � �𝕀𝕀�zj−1(min{zC,ωb}) ≥ ξj�dFξj�ξj�
V

j=C+1

= � �1 − Fξj �zj−1(min{zC,ωb})��
V

j=C+1

 (W14) 

 

where we used the fact that zj�ξj� is an invertible function for each j and the distribution ξj is 

known. 

Next, we modify the constraints related to a purchase decision 𝕀𝕀[ωC ≤ ωb]∏ 𝕀𝕀�ωj ≤C−1
j=0

min{zC,ωb}�. However, in this case, we need to consider three separate cases: choosing an 

outside option, choosing the last searched option, and all else.  

Choose an outside option (or 𝑏𝑏 = 0). Shocks �ϵj: j = 1 … C� could be integrated out: 

 

 �𝕀𝕀[ωC ≤ ωb]�𝕀𝕀�ωj ≤ min{zC,ωb}�
C−1

j=0

� dFϵj�ϵj�
C

j=1,j≠b

=�𝕀𝕀[ωC ≤ ω0]𝕀𝕀[ω0 ≤ zC]�𝕀𝕀�ωj ≤ min{zC,ω0}�
C−1

j=1

�dFϵj�ϵj�
C

j=1

=𝕀𝕀[ω0 ≤ zC]�𝕀𝕀[ϵC ≤ ωC
−1(ω0)]�𝕀𝕀�ϵj ≤ ωj

−1(min{zC,ω0})�
C−1

j=1

� dFϵj�ϵj�
C

j=1

=𝕀𝕀[ω0 ≤ zC]FϵC�ωC
−1(ω0)�� Fϵj �ωj

−1(min{zC,ω0})�
C−1

j=1

 (W15) 
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For the case when b ≠ 0 the situation is slightly more complicated as the constraint 

related to product returns depends on ϵb. Therefore, it should be included in derivations, we 

denote the result in Equation W15 as Hb(ϵb) and proceed to the case b ≠ 0. 

Choose the last clicked option (or 𝑏𝑏 = 𝐶𝐶).  

 

 �  Hb(ϵb)𝕀𝕀[ωC ≤ ωb]�𝕀𝕀�ωj ≤ min{zC,ωb}�
C−1

j=0

�dFϵj�ϵj�
C

j=1

=�HC(ϵC)𝕀𝕀[ω0 ≤ zC]𝕀𝕀[ω0 ≤ ωC]�𝕀𝕀�ωj ≤ min{zC,ωC}�
C−1

j=1

�dFϵj�ϵj�
C

j=1

=𝕀𝕀[ω0 ≤ zC]�HC(ϵC)𝕀𝕀[ω0 ≤ ωC]�Fϵj �ωj
−1(min{zC,ωC})�

C−1

j=1

dFϵC(ϵC)

=𝕀𝕀[ω0 ≤ zC]� HC(ϵC)�Fϵj �ωj
−1(min{zC,ωC})�

C−1

j=1

dFϵC(ϵC)
∞

ωC
−1(ω0)

 (W16) 

Choose other option (or 0 < 𝑏𝑏 < 𝐶𝐶).  

 

 �  Hb(ϵb)𝕀𝕀[ωC ≤ ωb]�𝕀𝕀�ωj ≤ min{zC,ωb}�
C−1

j=0

�dFϵj�ϵj�
C

j=1

=�Hb(ϵb)𝕀𝕀[ωC ≤ ωb ≤ zc] � 𝕀𝕀�ωj ≤ min{zC,ωb}�
C−1

j=0,j≠b

�dFϵj�ϵj�
C

j=1

=�Hb(ϵb)𝕀𝕀[ωC ≤ ωb ≤ zC] 𝕀𝕀[ω0 ≤ min{zC,ωb}]

× � 𝕀𝕀�ωj ≤ min{zC,ωb}�
C−1

j=1,j≠b

�dFϵj�ϵj�
C

j=1

=𝕀𝕀[ω0 ≤ zC]� Hb(ϵb)FϵC�ωC
−1(ωb )�

ωb
−1(zC)

ωb
−1(ω0)

× � Fϵj �ωj
−1(min{zC,ωb})�

C−1

j=1,j≠b

dFϵb(ϵb)

 (W17) 

After we combine the deviations above, we rewrite the original integral in the form of: 
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P =�WdF(𝛏𝛏, 𝛜𝛜,𝛙𝛙)

=��𝕀𝕀�zj ≥ zj+1�
C−1

j=1

𝕀𝕀[ω0 ≤ zC]� B(ξC, ϵb)dFϵb(ϵb)
ϵb

ϵb
�dFξj�ξj�
C

j=1

 (W18) 

where B(⋅,⋅) is a function which depends on two unobserved shocks ξC through zC and ϵb 

through ωb. Note that the function B itself is formally a function of all parameters of the model, 

but notable it depends only on two unobservable to the researcher variables. 

Next notice that only zC depends on ξC, thus the previous equation could be rewritten as: 

 

P =�WdF(𝛏𝛏, 𝛜𝛜,𝛙𝛙)

=��𝕀𝕀�zj ≥ zj+1�
C−1

j=1

𝕀𝕀[ω0 ≤ zC]� B(ξC, ϵb)dFϵb(ϵb)
ϵb

ϵb
�dFξj�ξj�
C

j=1

=� � 𝕀𝕀[ω0 ≤ zC]B(ξC, ϵb) D(ξC)dFϵb(ϵb)dFξC(ξC)
ϵb

ϵb

+∞

−∞

 (W19) 

where D(ξC) = ∭∏ 𝕀𝕀�zj ≥ zj+1�C−1
j=1 ∏ dFξj�ξj�

C−1
j=1  

Notice that integral in D(ξC) has a chain-like structure. Thus, we can sample random 

shocks iteratively. Let’s assume we sampled some value of ξC with ξC
g  being a realization of this 

random variable (thus, zC
g = zC�ξC

g� also sampled). In this case, we may sample ξC−1 in a way 

that zC−1 ≥ zC (or ξC−1 ≤ zC−1−1 �zC�ξC
g�� for random shock itself). However, we should adjust 

for the probability of such event FξC−1 �zC−1−1 �zC�ξC
g���. Notice that after generating ξC−1

g  we can 

repeat this procedure for ξC−2, and so on. 

After recursively applying the procedure discussed in the previous paragraph for each j 

we obtain the random sample �ξ1
g, … ξC

g� such that ∏ 𝕀𝕀�zj ≥ zj+1�C−1
j=1 = 1 but the probability 

needs to be adjusted by ∏ Fξj �zj−1 �zj+1�ξ+1
g ���C−1

j=1 .  
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Finally, we can eliminate the 𝕀𝕀[ω0 ≤ zC] by sampling ξC from a distribution such that 

ω0 ≤ zC holds and adjust the probability by FξC�zC−1(ω0)�.  

 

Web Appendix H: Details on the Model Estimation and Analysis of Synthetic Data 

 

Modified maximization procedure. In the results section we mentioned that in the 

empirical part of the paper, we slightly modified the maximization procedure. Specifically, we 

firstly estimated the model on the data on customers who viewed up to 48 products (one product 

listing). We used the estimated values for βψ and R (parameters related to product returns) as 

fixed and re-estimated the remaining parameters on the full data. This was done to account data 

imbalance – in Equation 8, there is only one constraint directly related to product returns 

𝕀𝕀[μib + ξib + ϵib + ψib ≤ −Ri]. Moreover, a large portion of sessions (~95%) ended up without 

purchase and thus could not be used to estimate the parameters related to product returns. As a 

result, when optimizing the model on the full data, the impact of “return”-related constraints on 

the final likelihood becomes negligible and parameters related to returns are “regularized” to 

zero. This leads to a substantial loss of accuracy in the “return”-related parameters with long 

browsing sessions (many clicks). 

Additional analysis on synthetic data. We discussed various estimation approaches which 

were used in previous research. Table W1 reports the results of the estimation. It demonstrates 

that methods used in the previous research are not suitable for the model discussed in the paper. 

In the paper we provide several reasons why old methods are failing, the detailed investigation of 

the best suitable method goes beyond the scope of the paper.  
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Table W1: Comparison to Alternative Estimation Approaches. 

 
True value Approach 

in Paper AR Simulatora 
AR Simulator 

(with 
smoothing)b 

β0u – 4.40 – 4.38 – 4.05 – 3.37 
β1u – .30 – .31 .00 .30 
σ1u .50 .43 .00 .04 
β0c  – 7.00 – 7.00 – 7.80 – 8.19 
β1c .50 .52 .95 .32 
β0
ψ 1.00 1.09 .00 1.02 

log R – 1.00 – .93 – 1.22 2.02 
aAR (Accept-reject) Simulator was used with 105 simulated random shocks. 
bAR Simulator (with smoothing) was used with 103 simulated random shocks. 
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