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Real-time Adaptive Design for Clinical Trials 
 
 

Abstract 
 
 Objective: To evaluate whether real-time (day-to-day) adaptation of clinical trials improves 

patient outcomes (lower mortality within the trial) and to identify the implied tradeoffs in 

confidence intervals, statistical power, and potential misidentification. The data and the analyses 

address the effect of delayed outcomes, e.g., a 30-day delay between treatment and observed 

outcomes. 

 Study Design and Setting: Using data from two large-scale random control test (RCT) 

clinical trials (30,732 patients in GUSTO-1 and 12,218 patients in EUROPA), we simulate the 

arm assignments and expected outcomes had the trials been run using real-time adaptation. Real-

time adaptation is accomplished with a multi-arm bandit (MAB) in which blinded assignments 

are revised based on outcomes observed up to and including the previous day. We also 

investigate two variants, an 𝜂𝜂-variant that balances RCT and MAB assignments and a forward-

looking multiday block-based MAB. 

 Results: Real-time assignment quickly learns which arm is superior. By the end of the trial, 

real-time assignment allocates more sample to the superior arm and less sample to the inferior 

arm(s) resulting in fewer mortalities over the course of the trial. Outcome probabilities are well 

within (frequentist) statistical confidence of RCT outcome probabilities, but with tighter 

confidence intervals on the superior arm and less-tight confidence intervals on the inferior 

arm(s). For the multi-arm trial in our data, statistical power is comparable (within a few 

percentage points) for pairwise comparisons of the superior arm and inferior arms but with a loss 

of statistical power for comparisons between inferior arms. The 𝜂𝜂-variant and the block-based 

MAB provide intermediate levels of benefits and costs while reducing the potential for 

misidentification of which arm is superior. 

 Conclusion: Real-time assignment has the potential to improve patient outcomes within the 

trial (beneficence) and the potential to reduce the confidence interval for the superior arm. These 

benefits are balanced with larger confidence intervals on inferior arms and less statistical power 

between inferior arms. Variants (𝜂𝜂 and block-based) provide intermediate benefits and costs. 
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Real-time Adaptive Design for Clinical Trials  
 
1. Introduction 

Significant breakthroughs in the medical treatment of patients have been achieved 

through the careful route from laboratory research to experimental animal studies, to clinical 

studies in subjects with established disease. Large Phase III trials on the effectiveness and safety 

of drug treatments form the important final phase of this development process. Often several 

thousands to tens of thousands of patients are studied before a drug is released to the market, and 

before a recommendation is included in the guideline. Typical examples include the introduction 

of renin angiotensin aldosterone system (RAAS) inhibitors in heart failure (~48-57,000 patients 

in Phase III trials)[1,2], and P2Y12-receptor inhibitors in patients with acute coronary syndrome 

(~145,000 patients) [3].  

Increasingly, however, large Phase III drug trials are under pressure to reduce their length 

and cost while also reducing potential harm to patients. The COVID-19 pandemic made the 

balance between speed of new drug development and statistical robustness in trials ever more 

relevant. New legislation and regulations regarding drug trials exacerbate the administrative 

burden and may impede the practical implementation of clinical trials. This may encourage 

trialists to seek greater efficiency in trial designs. 

We examine an alternative way to study clinical effects of drug treatments. We examine 

whether real-time adaptive (day-to-day) allocation can minimize the trial size (and the trial 

burden) without compromising the reliability of its final result. During the execution of a Phase 

III study, real-time adaptive allocation to the experimental drug and standard (or placebo) 

treatment might save healthy life-years if it becomes clear more quickly whether (and to what 
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extent) the innovation leads to a clinically more favorable result, or if the recommendation is 

identified successfully with fewer patients assigned to inferior arms. As uncertainty decreases 

during the conduct of a trial (RCT or adaptive), it may become unethical at some point to ignore 

the trend in outcomes when assigning patients. Trialists seek an optimal balance between (1) the 

need to learn the effectiveness and safety of the experimental treatment with (2) the benefits of 

treating patients with the treatment that is best within a reasonable statistical confidence based on 

current outcomes. Real-time adaptive allocation allows proportionally more assignments to the 

superior arm (as identified within the trial). Real-time adaptation might also allow stopping a 

trial early if necessary, based on futility or serious side effects. 

In most Phase III drug trials, (frequentist) significance tests and control of the 

corresponding type I (false positive) and type II (false negative) errors are central. This focus 

often leads to a rigid design, with a specified number of patients based on the expected treatment 

effect and the chosen target confidence levels for the statistical hypothesis tests. Interim analyses 

of trial data are often included to understand the direction and magnitude of the effect of the 

experimental drug before the trial is completed. However, the number of interim analyses is 

usually limited and the bar to adapt the trial design is set high to avoid false positives that might 

result from multiple ‘looks’ at the data. We explore whether clinical trials can identify the effects 

of experimental drug treatments earlier (and thus be based on smaller samples or proportionally 

more sample to the superior arm) if real-time adaptation of clinical trials is implemented in 

combination with Bayesian thinking. Bayesian methods provide a more robust way of 

incorporating new information (such as a patient outcomes) about the parameter of interest (such 

as the efficacy of a drug). This means that Bayesian methods can update existing efficacy 
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estimates in real time, during the trial. Importantly, real-time adaptation can be implemented 

automatically, without jeopardizing blinded treatment allocation.  

“Continuously adaptative” trials seek to optimize the tradeoff between maximizing short-

term outcomes of the trial, such as the best possible recovery of patients who must be treated 

now, and long-term outcomes, including the fastest path to discovery and dissemination of new 

treatments to all future patients. From a statistical point of view, this optimization underlying 

real-time adaptation is a multi-armed bandit (MAB) application.[5,6, 7, 8, 9, 10, 12] 

The literature on adaptive designs for trials using between-interim points information is 

rarefied. Previously, an MAB strategy has been shown to improve outcomes in simulated data by 

assigning patients who arrive in blocks. The algorithm assumes that all outcomes are observed 

within the block such that there is no delay between block-based assignments and outcomes [11] 

The goal of the current study is to assess the value, strengths, and caveats of continuously 

adapting trials. We focus on the trials where patients are randomized on a day-to-day basis (as 

opposed to arriving in multi-day blocks) and where there are substantial delays between 

randomization and outcomes. We implement real-time adaptation of clinical trials in an 

algorithm and test it on data from two large-scale trials, exploring its performance boundaries 

and comparing its performance with preplanned random assignment and with block-based 

approaches. Each comparison is based on individual patient data empirically-grounded from the 

large-scale clinical trials. The simulations represent would have happened had these trials been 

adapted in real-time (day-to-day). 

In the next sections, we present how real-time adaptation, based solely on information 

available to the trialists during the trial, might have prevented cardiovascular events during the 

trial in both studies. Real-time adaptation reliably identifies the best treatment while using 
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observed outcomes to change the randomization rate, thus identifying and favoring the most 

effective treatment over the course of the trial.  

The prevention of cardiovascular events does not come without ethical tradeoffs [11, 

14,15] . Gains in patient beneficence and more (frequentist) statistical power for superior arms 

implies smaller samples on inferior arms and reduced statistical power on pairs of inferior arms 

(multi-arm trials). Fortunately, this does not affect the ability of real-time adaptation to identify 

the best treatment.  

 

2. Methods: process/principle, calculation, software 

2.1 The principle of real-time adaptation of trials  

Real-time adaptation of trials requires a preplanned statistical algorithm to handle the 

continuous flow of information. An MAB algorithm assigns patients to one of the treatment 

arms, based on the knowledge of the outcomes of each arm as they appear during the course of 

the trial. Starting with a balanced 1:1 randomization ratio, MABs tend toward a ratio that favors 

randomization to the treatment arm with the best expected outcome, utilizing all information (on 

the occurrence of the trial endpoints) that has been gained within the trial up to the time that 

allocations are made. An MAB automatically randomizes a sufficient number of patients to all 

study arms, but not necessarily in a 1:1 ratio, until uncertainty in effect estimates is reduced to a 

level such that it is no longer of value to assign patients to the inferior arms. The algorithm 

optimizes patient outcomes, while avoiding endpoints that are ‘unnecessary’ for the learning 

process [13].1 Because the randomization ratio changes dynamically as patients are assigned to 

                                                 
1 Under reasonable assumptions about the independence of the arms, the algorithm has been proven to be the 
assignment strategy that optimally balances learning with maximizing patent outcomes. See, for example, Gittins, J. 
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arms, the MAB stops assigning patients to inferior arms automatically when reducing uncertainty 

in the inferior arm is no longer justified. 

 Figure 1 presents the conceptual framework of real-time adaptation of clinical trials, and 

its core two steps: assignments and updating. 

 

Fig. 1 - Real-time adaptation of clinical trials 

2.2 The statistical details 

Assignments to arms are based on the best estimates of the endpoint outcome 

probabilities, and the uncertainty about those probabilities, accrued up to and including each day 

of the trial that has occurred before patient assignment. Updating is the process of observing 

endpoints as they occur and automatically recalculating estimates and uncertainty about outcome 

probabilities based on all observations up to and including the observed endpoints. The typical 

MAB represents system knowledge about the endpoint probabilities using a beta probability 

distribution per arm [13]. The beta probability distribution has two parameters, αa and βa, for 

each arm a. Larger parameter values mean less uncertainty in beliefs about the arm’s efficacy.  

The expected value of the beta distribution, αa / (αa + βa), gives an estimate of the endpoint 

                                                 
C. 1979. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical. Society. Ser. B 41(2) 
148–177, plus commentary. 
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probabilities for each arm (e.g., probability of a cardiological event). The parameters also enable 

the trialist to quantify uncertainty. The variance of knowledge about outcome probabilities is an 

analytic function of αa and βa. Technically, when a delayed outcome, say 30-day mortality, is 

observed, 𝛼𝛼𝑎𝑎 is incremented by +1 for mortality and 𝛽𝛽𝑎𝑎 is incremented by +1 for a survival. The 

updating rule is predetermined and can be blinded. 

The algorithm, automatically and optimally, solves for the best assignment based on these 

parameters. Calculations are completed in real time and balance the short-term outcomes (best 

assignment for that patient) with long-term outcomes of the trial (best learning for all future 

patients). As data arrive, parameters increase in value and randomization rates change. When 

more than one patient arrives on a given day, we explore two strategies. In one strategy, all 

patients on a given day are assigned to one arm. In a second strategy, the algorithm provides 

randomization rates using methods inspired by previous research on block assignment [11]. We 

compare both strategies to the standard strategy of randomly assigning arms in a fixed ratio and 

passively observing the changes in the expected value of the efficacy of each arm. MABs differ 

from traditional adaptive trials in which Data and Safety Monitoring Boards (DSMBs) might 

recommend adjusting assignments a small number of times[16]. In a real-time adaptive trial, 

assignment ratios change automatically after each day (or, if practically feasible given the 

challenges of blinding, after each patient). Real-time adaptive trials may still decide to use 

DSMBs for safety checks and other tasks. 

The algorithm used in our (simulation) analyses is based on Gittins’ optimal solution to 

the dynamic-programming Bellman Equation for the MAB [17]. In Gittins’s solution, patients 

are assigned to the arm with the largest index, where the index, which depends on the two 

parameters, 𝛼𝛼𝑎𝑎 and 𝛽𝛽𝑎𝑎, and is computed based on all knowledge gained prior to the assignment. 
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The index also depends upon a parameter, called a discount rate [9, 11, 17] , chosen according to 

the length of the trial. For technical details and notation, please refer to the online Appendix. In 

the analyses used in this article, the initial parameters of the algorithm are set in advance so that 

we, as researchers, do not change the assignment rules based on intermediate outcomes. The 

“discount” parameter is chosen conservatively, and further analyses indicate that the algorithm is 

robust with respect to this parameter. 

 

 
2.3 What if the GUSTO-1 trial and the EUROPA trial had been adapted in real time? 

Patients 

To study the potential performance of real-time adaptation of trials, we conducted simulations 

grounded by the data from the GUSTO-1 [18] and the EUROPA trials [19] The design and 

principal results of both trials have been published and are summarized in Table 1. Briefly, 

GUSTO-1 randomized a total of 31,180 patients2 presenting with acute myocardial infarction to 

one of three thrombolytic strategies. (A fourth strategy was added later into the trial.) The 

primary endpoint was 30-day all-cause mortality and was lowest in the patients randomized to 

accelerated tissue plasminogen activator (t-PA) with intravenous heparin, 6.3%. The GUSTO-1 

investigators concluded that this combination “is the best thrombolytic strategy to date (i.e., 

1993) for patients with acute myocardial infarction.”  

 The EUROPA investigators randomly assigned 12,218 patients with stable coronary heart 

disease to either a (mean) 4.2-year treatment with the angiotensin-converting-enzyme (ACE) 

inhibitor perindopril or to a matching placebo. The primary endpoint of was death by myocardial 

infarction or cardiac arrest and was lowest (8%) in those patients randomized to perindopril. In 

                                                 
2 30,752 patients after excluding observations with missing data. 
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2003, the investigators concluded that, “on top of other preventive medications, [perindopril] 

should be considered in all patients with coronary heart disease.” 

 The GUSTO-1 and EUROPA trials were conducted according to the prevailing ethical 

regulations at the time, which included approval of the protocol by the institutional review board 

at the participating hospitals, and informed consent by the study participants. Our analyses are 

based on the individual (anonymized) patient data from the trials, which we obtained by courtesy 

of Duke University School of Medicine and Servier. 
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Table 1 – GUSTO-1 and EUROPA RCTs 

Trial details GUSTO-1 ii EUROPA iii 

Goal 
Compare streptokinase and tissue 
plasminogen activator thrombolytic 
strategies in the treatment of acute 
myocardial infarction 

Assess the effect of perindopril versus 
placebo on the combined endpoint of 
cardiovascular death, myocardial 
infarction, and resuscitated cardiac arrest 
in patients with stable coronary heart 
disease 

1st Enrollment December 27, 1990    27 October, 1997 

Termination    February 22, 1993 20 March, 2003 

Arms at the start of the 
trial 

Arm 1: t-PA, IV Heparin  

Arm 2: SK, IV Heparin  

Arm 3: t-PA+ SK, IV Heparin  

Arm 1: Perindopril   

Arm 2: Placebo 

Patients per randomly    
allocated treatmenta  

t-PA, IV Heparin:           10,396 

SK, IV Heparin:             10,410       

t-PA+ SK, IV Heparin:  10,374 

Perindopril:   6,110 

Placebo:        6,108 

Primary endpoint Death from any cause at 30 days of follow-
up 

Composite of cardiovascular mortality, 
non-fatal MI, and resuscitated cardiac 
arrest 

Incidence of the primary 
efficacy endpointsa  

t-PA, IV Heparin:               653 (6.3 %) 

SK, IV Heparin:                 763 (7.3 %) 

t-PA+ SK, IV Heparin:       723 (7.0 %) 

Perindopril: 488 (8.0%) 

Placebo:      603 (9.9%) 

 

Eligibility 
Patients presenting to a participating 
hospital less < 6 hours after symptoms, 
with chest pain lasting at least 20 minutes 
and accompanied by electrocardiographic 
signs of ≥0.1mV of ST-segment elevation 
in two or more limb leads or ≥ 0.2 mV in 
two or more contiguous precordial leads 

Men and women ≥ 18 years with 
evidence of coronary heart disease per 
MI, percutaneous or surgical coronary 
revascularization, angiographic evidence 
≥ 70% narrowing of at least one major 
coronary artery, or a history of typical 
chest pain in male patients with an 
abnormal stress test 

Exclusion 
Previous stroke, active bleeding, previous 
treatment with streptokinase or 
anistreplase, recent trauma or major 
surgery, previous participation in the trial, 
or non-compressible vascular punctures 

 Clinically evident heart failure, planned 
revascularization procedure, 
hypotension, uncontrolled hypertension, 
use of ACE-inhibitors or angiotensin-2 
receptor blockers in the last month, renal 
insufficiency, and serum potassium 

a Before removing observations with missing data. GUSTO-1 sample sizes after removing missing data are: 10,255 (arm 
1),10,268 (arm 2); 10,209 (arm 3)  
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2.4 Data and grounded simulations 

The follow-up duration for the primary endpoint of GUSTO-1 was 30 days after 

randomization (Table 1)[18]. In contrast, the mean followup period in EUROPA was 4.2 years. 

We explore how these differences in trial design impact the application and effectiveness of the 

real-time adaptation. The detailed distribution of the number of Randomized Control Test (RCT) 

randomizations and endpoints per day in the original trials is presented in the online Appendix 

(eFigures 1 and 2). Both plots cover the entire duration of the trial, from the first randomization 

until the last primary endpoint was observed. 

 Based on the available trial data, we simulated what would have happened had the trial 

been adapted in real time by a MAB. We started with a uniform randomization ratio (1:1:1 for 

GUSTO-1; 1:1 for EUROPA). For each day (D) of the trial, the algorithm assigns all arriving 

patients at day D to the study arms, based on the informational state of the system up to that the 

beginning of D. Such assignments are done in the simulations by randomly drawing (with 

replacement, given exchangeability of patients3) a patient from the pool of patients in the chosen 

arm. To avoid a particularly favorable draw, we repeat the process with 100 replicates for each 

study. For example, in GUSTO-1, these pools have 10,255 patients in arm 1, 10,268 patients in 

arm 2 and 10,209 patients in arm 3. The grounded simulation continues until the number of 

patients in the simulation matches the number of patients in the original RCT trial. The 

assignment rule is automated and optimized according to pre-established rules as determined by 

automated use of the MAB. The MAB updates the information state of the system by observing 

the incidence of the primary endpoint for the patients in the trial using only information that is 

                                                 
3 We are using the principle of exchangeability of patients to draw with replacement. Thus, the number of patients in 
an arm in the simulation can exceed the number of patients in an arm in the RCT. Drawing with replacement is a 
well-established statistical method (similar to bootstrapping for standard errors) 
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known at the time of the new patient assignment. Delayed outcomes that are not observed by day 

D are not used in the day D assignment. We repeat this procedure for all days of the trial. 

 Performance was studied, and is reported here, with respect to the number of assignments 

made to arms, and with respect to the primary study endpoints as estimated at the end of the 

empirically-grounded simulation. The confidence intervals reported are computed over 100 

replicates, providing evidence of the uncertainty on the estimated incidence of the primary 

endpoint.  Because most RCT trials are framed in classical frequentist interpretations, we report 

the odds ratios for all pairs of arms and corresponding Wald-based frequentist 95% confidence 

intervals using an univariate logistic regression in the online Appendix [20]. 

2.5 𝜂𝜂-Variation to Ensure a Target Minimum Power 

 Empirically, the MAB identifies the superior arm quickly and assigns substantial sample 

to the superior arm. Less sample is assigned to inferior arms resulting in less frequentist statistical 

power for the inferior-arm outcome probabilities. This is an ethical dilemma. Trialists may wish 

to assure a minimum sample size (minimum statistical power) on the inferior arms [21]. 

To explore this issue while retaining some of the advantage of real-time adaptation, we 

report an 𝜂𝜂−variation of the MAB algorithm that explicitly guarantees a minimum level of 

statistical power to inferior arms. In the 𝜂𝜂-variation, we randomize patients across all arms that 

have not reached the minimum sample size with probability 𝜂𝜂, and assign patients with the Gittins 

solution with probability 1 − 𝜂𝜂𝑘𝑘𝐷𝐷, where 𝑘𝑘𝐷𝐷 is the number of arms below the minimum sample 

size per arm at the start of day D. As an illustration of the 𝜂𝜂-varinant, we set the tuning parameters 

to 𝜂𝜂 = 0.25 and the minimum sample size to 6,000 patients. These values of the tuning parameters 

are conservative making the MAB more like an RCT early in the trial. Depending upon the trialists’ 

judgment with respect to the ethical dilemma, the trialist can set more-aggressive (favoring the 
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MAB) or less-aggressive (favoring the RCT) values of the parameters. See the last three rows of 

Table 2 for the effect of the illustrative parameters on the GUSTO-1 trial. 

 

2.6 Patient blocking in the presence of outcome delays 

The role of MABs was previously examined in trials where patients arrive in blocks and 

outcomes are observed before the next block is assigned [11]. The method provided “substantial 

improvements in terms of patient benefit, especially for small populations.” Patients were 

assigned in blocks in part so that delayed outcomes could be observed within the time frame of 

the block. When comparing the block-based MAB to other trial strategies including fixed designs 

and Thompson sampling, the authors identified a tradeoff between improved patient outcomes 

and statistical power. For a scenario with response rates matching an empirical trial and for a 

block size large enough to observe all outcomes, the block-based MAB improved the expected 

number of patient successes by almost 50% but with a reduction in statistical power of 

approximately 70%. Results depended upon the block size, with better patient outcomes and 

lower power observed for smaller blocks. Other test designs produced intermediate outcomes 

and power relative to the block-based MAB and an RCT. 

The block-based adaptive trial strategy enrolls patients in 𝐽𝐽 blocks of size 𝑏𝑏, assigning 

patients in block 𝑗𝑗 using the information gathered up to and including the 𝑗𝑗 − 1𝑠𝑠𝑠𝑠 block [11]. 

Outcomes are observed immediately at the end of a block and used for assignments in the next 

block.  

Because, theoretically, learning could happen within a block, the block-based algorithm 

looks forward through the block by simulating the expect outcomes and Gittins-Index updates 

within a block. (First-block assignments are random draws based on the treatment priors.) The 
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simulation to identify assignment probabilities assumes (1) the first patient is assigned based on 

the Gittins Index calculated based on previous-block outcomes and (2) second and subsequent 

patients within a block are assigned, outcomes observed, and Gittins Indices updated based on 

simulated outcomes with priors based on all outcomes observed prior to the simulated assignment. 

Using patient interchangeability, the algorithm calculates the expected percentages of arm 

assignments over all possible patient orders. This is equivalent to considering the expected value 

of the assignments that the Gittins’ algorithm would have made within a block were outcomes 

observed based on the history up to a patient. To make the algorithm feasible, the order of patient 

arrivals are sampled rather than exhaustively enumerated. This algorithm has become known in 

the literature as the forward-looking Gittins index (FLGI) algorithm [8, 11]. 

For the GUSTO-1 and EUROPA trials, we assume updating occurs only for those patients 

whose outcomes are observed within a block. This assures that the delayed-outcome-block-based 

algorithm is the same as a real-time assignment algorithm when the block size is one day. We use 

a block size consistent with the strategy in [11]; we set 𝑏𝑏 = 60 days so that most 30-day outcomes 

are observed within a block. Our code is available for researchers who wish to evaluate other block 

sizes. 

 

3. Results 

The first four columns of Table 2 present the results of GUSTO-1 trial. The last three 

columns present the results of the EUROPA trial. For each trial, we present sample size, number 

of primary endpoint events, and event rate for the original RCT (in the first three rows) along 

with confidence intervals [22]. In the last nine rows of Table 2, we present the results had these 
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trials used MABs to adapt in real time (day-to-day), to adapt in real-time with the 𝜂𝜂-variant, and 

to adapt with the block-based variant.  

For both trials, the ranking of all arms in the simulation of real-time trial adaptation 

matches the RCT ranking (t-PA with IV Heparin is the best, SK with IV Heparin is the worst in 

GUSTO; Perindopril is the best, placebo is the worst in EUROPA). The primary endpoint rates 

estimated with the MAB are quite close to those estimated with the RCT and well within the 

confidence intervals (computed based on the 100 replicates). This is true for all tested MAB 

strategies. All MAB variants provided tighter confidence intervals on the mortality rate for the 

(identified-within-the-trial) superior arm, with the tightest confidence interval provided for real-

time adaptation. But the tighter bound for the superior arm comes with a tradeoff: confidence 

intervals are not as tight on the (identified) inferior arms. 

All tested MABs provide better patient outcomes (beneficence) with the lowest mortality 

for real-time adaptation (1,941 lives lost) and the highest mortality for the RCT (2,074 lives lost) 

– a net saving of 133 lives due to real-time adaptation. The net savings for the 𝜂𝜂-variant and the 

block-based MAB were 72 and 103 lives saved, respectively.  

The gain in lives saved comes at the cost of making fewer assignments to the inferior 

arms. For real-time adaptation the assignments to the inferior arms were 2,259 as opposed to 

10,268 in the SK + Heparin arm for GUSTO-1, 3,969 as opposed to 10,209 in the t-PA+SK + 

Heparin arm for GUSTO-1; and 5,692 as opposed to 6,108 in the placebo arm in EUROPA). The 

other variants allocated more sample to the inferior arms. Note that while the 𝜂𝜂-variant specifies 

a target minimum sample size, the actual assignments for inferior arms vary slightly from the 

target reflecting the tendency of the real-time adaptive portion of the 𝜂𝜂-variant to favor the 

superior arm. 



Table 2. Benchmark simulation results for GUSTO-1 and EUROPA 

 GUSTO-1 EUROPA 

 

 
Arm 1a: 

 t-PA, IV Heparin 

Arm 2:  

SK, IV Heparin 

Arm 3:  

 t-PA+ SK, IV Heparin 

   Total 

Mortality 

Arm 1 a:                     

Perindopril 

Arm 2:    

Placebo Totals 

RCT     RCT   

No. 10,255 10,268  10,209  30,732 6,110 6,108 12,218 

Events 631 742 701 2,074 489 603 1,092 

Event rate 0.062 (0.055, 0.068) 0.072 (0.068, 0.077) 0.069 (0.068, 0.069)  0.080 (0.073, 0.087) 0.099 (0.092, 0.106)  

MABb  η = 0 MABb, d 

No. 24,504 2,259 3,969 30,732 6,526 5,692 12,218 

Events 1,509 162 271 1,941 524 560 1,084 

Event rate 0.062 (0.061, 0.063) 0.076 (0.074, 0.077) 0.073 (0.070, 0.075)  0.080 (0.079 0.081) 0.098 (0.098.099)  

MABb,c  η = 0.25 

No. 18,479 5,683 6,570 30,732 

Events 1,136  413  453 2,002 

Event rate 0.062(0.061, 0.062)  0.073 (0.072,0.073)   0.069 (0.069, 0.070)  

MAB with blocksb,d 

No. 21,593 3,579 5,560 30,732 

Events 1,336  255  379 1,971 

Event rate 0.062 (0.062, 0.063)  0.072 (0.072, 0.073)   0.070 (0.069, 0.071)   
a Best arm in the trial 
b Averaged over 100 replicates.  MAB priors in GUSTO: α0=6, β0=390. MAB priors in EUROPA: α0=2, β0=300. 
c  Minimum n=6000. 
d block size: 60. Monte Carlo draws: 100. 



 

3.1 More lives would be saved for trials with larger differences in outcome probabilities 

Every life is important, but one might ask whether 133 fewer deaths out of 2,074 

mortalities justifies the use of a new method. This is an ethical issue beyond the scope of this 

article. However, if we examine the GUSTO-1 trial, we see that the three arms are close in 

mortality risk, 0.063, 0.070, and 0.073. As a hypothetical, we examine more substantial 

differences—mortality rates of 0.063, 0.126, and 0.189 for the three arms, unknown before the 

trial. In this hypothetical with 30,732 patients, a real-time adaptive assignment would have saved 

1,700 lives compared to a 1:1:1 RCT assignment. We kept the total patients the same for this 

comparison recognizing that if the trialist had strong priors on the mortality risk and required the 

same statistical power, the trialist would allocate less sample to both the MAB and to the RCT. 

However, the MAB would still save a substantial proportion of lives. The more that the true 

outcome probabilities differ for a given sample size, the greater the number of lives saved. 

 

3.2 When outcomes are severely delayed, an aggressive 𝜂𝜂-variant mitigates misidentification 

GUSTO-1 primary endpoints were observed at the 30th day after randomization, which is 

relatively fast. The EUROPA trial provides the opportunity to assess the effect of longer delays 

in outcomes. The longer duration in observing outcomes affects an MAB’s ability to learn from 

the variation in endpoints during the early stages of the trial. Less rapid learning and adaptation 

affects the incremental advantage of optimal, rather than equally-likely, random assignment [23]. 

In the EUROPA-grounded simulation with a  MAB, the treatment effect is statistically 

significant at 𝑝𝑝 ≤ 0.05 for 83% of of these replicates. If we apply an aggressive 𝜂𝜂-variant with 

𝜂𝜂 = 0.50 and sample size equal to 50% of each arm in the RCT trial, then all replicates had a 𝑝𝑝-
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value that achieved significance, with only a slight change in the confidence intervals. (This 𝜂𝜂-

variant is similar to a burn-in strategy as in [24].) As in Table 2, the lower likelihood of 

misidentification comes at the cost of smaller reduction in the incidence of cardiological events. 

For statistical details please refer to the online appendix D. 

 

3.2 Visualizations of arm assignments and statistical power 

Figure 2 summarizes arm assignments for (a) GUSTO-1 and (b) EUROPA. The blue, 

orange, and gray lines (GUSTO-1, blue and orange EUROPA), and the left vertical axis present 

the cumulative number of assignments over the duration of the trials. The horizontal axis 

represents the days of the trial. The real-time-adaptation MAB adapts as data on the patient 

endpoints become available because it learns the incidence rate of the primary endpoint 

(uncertainty decreases). As the trial progresses, the real-time MAB automatically assigns more 

patients to the superior arm (blue line). By the 200th day of the 819-day GUSTO-1 trial, and the 

350th day of the 1,989-day EUROPA trial, the real-time MAB begins to assign all patients to the 

superior arm (blue line). Future research might explore the implications, especially ethical 

implications, of stopping the trial soon after assignments stabilize to the superior arm. 
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A. GUSTO – 1  

 

B. EUROPA   

 

Fig. 2 – Assignments to Arms using the Day-to-Day Multi-arm Bandit Algorithm   

 Type I and II errors evolve throughout the trial as does the estimated odds ratio [20] 

because the MAB learns as more patients are allocated during both trials. By the end of the trial, 

the odds ratios based on the MAB converge to those based on the RCT. The mean and 95% 

bootstrapped confidence interval for the odds ratio of the superior arm, t-PA + Heparin, versus 
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SK + Heparin, at the end of the adaptive trials in GUSTO is 1.243 (1.214, 1.271) and versus 

tPA+SK+Heparin is 1.088 (1.07, 1.105). In EUROPA, the mean and 95% confidence interval of 

the odds ratio for Perindopril versus placebo is 1.288 (1.239, 1.337). The odds ratio for the 

superior to most sub-optimal are above 1.0 and tighter than the confidence interval comparing 

the two suboptimal treatments GUSTO (SK + Heparin and t-PA+SK + Heparin). The odds ratios 

decrease with sample size, as shown in the online Appendix (eFigures 3). 

 

3.3 Effect of real-time trial adaptation on statistical power 

Compared with the fixed-design RCT, real-time adaptation assigns a larger sample of 

patients to the superior arm. The increased sample for the superior arm does not come for free – 

it implies less sample for the inferior arms which, in turn, implies lower statistical power for the 

inferior arms. To focus on this tradeoff, we plot the change in statistical power over the duration 

of the GUSTO-1 trial enrollment (789 days until the last patient was enrolled).  

Figure 3 presents the statistical power for an expected 15% reduction in mortality (𝑝𝑝1 =

0.08 and 𝑝𝑝2 = 0.068). The type I error rate is set to 𝛼𝛼 = 0.05. The green line presents the statistical 

power for which the original RCT (all pairs of arms) was designed (90%). As expected, power 

increases smoothly to 90% as the RCT assigns sample randomly to the three arms. An MAB is 

likely to present the trialist with ethical tradeoff because, on the sole criterion of optimizing power 

for all pairs of arms, the RCT is best [11]. The blue, red, and purple lines represent the statistical 

power for all three pairs of arms given the daily randomization rate that would have been observed 

had a real-time adaptation MAB been used in this trial. The increase in power is less smooth and 

varies by arm-pair. At the end of the trial, the statistical power for comparisons of the superior arm 

(arm 1, determined endogenously within the trial) to one inferior arms (and 3) is slightly above 
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that of the RCT, but the comparison between the superior arm (arm 1) and the other inferior arm 

(arm 2) is slightly below that of the RCT. The comparison between the two inferior arms is well 

below that of the RCT. These power computations simply reflect that the MAB assigned fewer 

respondents to arm 3 than did the RCT, and even fewer respondents to arm 2.  

The statistical power is computed as the power that the resulting sample size provides to 

detect the true mortality rates on that day. (The RCT endoutcome rates are: arm 1(t-PA, Heparin) 

= 0.062; arm 2(SK, Heparin) = 0.072, arm 3 (t-PA, SK, Heparin) = 0.069.  

  

Fig. 3 - Power in RCT and MAB GUSTO-1 simulations     

 
Figure 3 illustrates the ethical decisions that are implied by the use of real-time 

adaptation. Patient risk is reduced, and patient benefit increased when more sample is allocated 

to the superior arm. This also implies tighter confidence intervals on the mortality rates of the 
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superior arm. The implied samples sizes in our simulations suggest slightly more power when 

comparing the superior arm to one inferior arm and slightly less power to the other inferior arm. 

However, real-time adaptation implies less statistical power to distinguish between the two 

inferior arms. 

The 𝜂𝜂-variant of real-time adaptation and the block-based MAB allocate more sample to 

the superior arm than the RCT, but less sample than real-time adaptation. Relative to real-time 

(day-to-day) adaptation, these MAB variants provide more power between the superior arm and 

each inferior arm, and reduce the risk of misidentification (as discussed in an earlier section), but 

to achieve these gains the MAB variants trade off slightly less patient benefit.  

4. Discussion 

Our analyses suggest that the use of real-time adaptation in the GUSTO-1 and EUROPA 

trials would likely have saved lives and avoided cardiovascular events relative to classical RCTs. 

Real-time adaptive trials enhance the ethical principle of beneficence in the sense of the Belmont 

report—"maximize possible benefits and minimize possible harm [16].” Real-time adaptive trials 

also respect persons and justice because a priori arm assignment depends upon outcomes not 

knowable in advance. The algorithm does not depend upon demographic indicators. However, 

there is an ethical issue because the likelihood of receiving the best treatment changes over time. 

In real-time adaptive trials, patients who enter the trial late or after the trial has ended are more 

likely to receive the best treatment than patients who enter the trial early. (This is also true to a 

lesser extent when trial assignment ratios are adapted due to a small number of interim reviews 

and is always true when comparing patients in a trial to those who receive treatment after a 

trial.). The use of real-time adaptation implies tighter confidence intervals involving the superior 

arm, but at the cost of less tight confidence intervals for the inferior arms. For the multi-arm trial, 
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statistical power for real-time adaptation for pairwise comparisons to the superior arm were 

comparable to those in the RCT – a sometimes above and sometimes below the RCT in our 

simulations. Statistical power for comparisons between inferior arms was much below those 

observed in the RCT. These ethical issues are beyond the scope of the present article. We seek to 

highlight the issues for the MAB and its variants. The 𝜂𝜂-variant and the previously proposed 

block-based MAB provide the trialist with a means to balance the ethical issues and achieve 

benefits and costs that are intermediate between an RCT and real-time adaptation.. 

 Our analyses highlight when real-time adaptation is best and highlight tradeoffs that must 

be made. Lives would have been saved in the GUSTO-1 and EUROPA trials, but the number of 

lives saved was not dramatic because the arms were close in outcomes. In trials where the 

outcomes are likely to vary more, the number of lives saved could be more dramatic. Even more 

lives could be saved with stopping rules, but at the cost of substantially less sample for the 

inferior arm(s) implying larger confidence intervals and less statistical power for those arms. 

Our discussion attempted to balance Bayesian and frequentist perspectives. Real-time 

adaptation is inherently Bayesian because the MAB updates posterior distributions of outcomes 

and assigns patients to arms by solving a Bayesian optimization problem. However, RCT sample 

sizes are traditionally based on frequentist power calculations and analyzed in that domain. 

Because trialists who use RCT are more likely to be familiar with classical statistics, we chose to 

present results such as confidence intervals, odds ratios, and statistical power within the domain 

that is used most often to analyze RCT trials. There is nothing incompatible with analyzing the 

resulting outcomes from a classical perspective. After the data are obtained, the endogeneity of 

assignments does not affect the calculations. We could have chosen to present the results from a 

purely Bayesian perspective and used Bayesian concepts such as Bayes factors or Bayesian 
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confidence intervals to analyze the trial results. The conceptual issues raised in this paper would 

have been the same. 

In the GUSTO-1 and EUROPA trials, our analysis of real-time adaptation and the 

variants are limited to the starting arms in the RCT, but real-time adaptation (and variants) are 

not limited to the starting arms. Additional arms can be added during the trial. Arms are 

eliminated automatically if the MAB no longer allocates sample – such elimination is blind to 

the researchers (and optimal). We encourage further research to test stopping rules and to test 

real-time adaptation with the inclusion of arms that were not present in the original planning. 

When a new arm is introduced after convergence of the original arms, Bayesian priors are 

necessary for the new arm—priors must be sufficiently optimistic so that the algorithm explores 

the new arms, but not so optimistic that it over-explores the new arms. Setting such priors is 

practical because, ethically, the new arm would not have been introduced unless it had a 

reasonable probability of improving outcomes. 

4.1 Study Limitations 

Real-time adaptive trials outperform fixed-design RCTs with respect to patient 

beneficence. We evaluated this hypothesis by post hoc analyses of the GUSTO-1 and EUROPA 

trials. There is nothing in our analyses that used knowledge that was not available at the time of 

RCT patient assignment. Nonetheless, any post hoc analyses must be treated with caution. Our 

simulations assume patient exchangeability. We have no reason to question patient 

exchangeability in the GUSTO-1 and EUROPA trials. However, when secular time trends 

independent of the trial are present, patients are not exchangeable and any time trends would 

need to be modeled [28]. 
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 Our data are time-stamped at the daily level, so our MAB assignments and learning occur 

once a day and are conservative. Within-day data, when available, would allow for even more 

gains in patient beneficence. 

 We focused on within-trial optimization. For across-trials multiple-population settings, 

researchers might explore methods to merge real-time adaptive methods and platform-trials 

methods. Adaptive platform trials provide an alternative that compares multiple interventions, 

generates subgroup estimates, and minimizes downtime between trials [26]. 

Blinding is an important matter in clinical trials. Without blinding, participants in an 

adaptive trial may be tempted to guess the superior arm. Real-time adaptive trials such as those 

using MAB assignment can be blinded because assignment is based on pre-defined rules such 

that neither the experimenter nor the patient knows which patient is assigned to which arm. 

Careful protocols need to be developed, and independent Data and Safety Monitoring 

Committees should be used, to check on the adaptive process and identify any undesirable 

patterns of adverse event occurrence [27]. Finally, we might improve assignments further with 

the use of biomarkers as surrogate measures of outcomes [8, 12, 26]. 

 

4.2 Conclusion 

 In this article, we explicitly addressed and discussed the trade-off implicit to real-time 

adaptive trials: real-time adaptive trials increase patient beneficence (e.g., fewer cardiovascular 

events) by allocating less sample to inferior arms. While real-time adaptation saves lives and 

reduces confidence intervals for the superior arm, it reduces confidence intervals in pairs of 

inferior arms. The trialist must also compare the benefits to changes in statistical power, 

especially among inferior arms.  



Real-time Adaptive Design     26 

 
  
References 

[1] Cheng J, Zhang W, Zhang X, et al. Effect of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II 
Receptor Blockers on All-Cause Mortality, Cardiovascular Deaths, and Cardiovascular Events in Patients With 
Diabetes Mellitus: A Meta-analysis. JAMA Intern Med. 2014;174(5):773–785. 
doi:10.1001/jamainternmed.2014.348 

[2] Tai, C., Gan, T., Zou, L. et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor 
blockers on cardiovascular events in patients with heart failure: a meta-analysis of randomized controlled trials. 
BMC Cardiovasc Disord 17, 257 (2017). https://doi.org/10.1186/s12872-017-0686-z 

[3] Baldetti L, Melillo F, Moroni F, Gallone G, Pagnesi M, Venuti A, Beneduce A, Calvo F, Gramegna M, Godino 
C, D'Ascenzo F, De Ferrari GM, Capodanno D, Cappelletti AM. Meta-Analysis Comparing P2Y12 Inhibitors in 
Acute Coronary Syndrome. Am J Cardiol. 2020 Jun 15;125(12):1815-1822. doi: 10.1016/j.amjcard.2020.03.019. 
Epub 2020 Apr 2. PMID: 32305225. 

[4] Berry DA. A case for Bayesianism in clinical trials. Stat Med. 1993 Aug;12(15-16):1377-93; discussion 1395-
1404. doi: 10.1002/sim.4780121504. PMID: 8248653. 

[5] Katehakis M and Veinott. A. The multi-armed bandit problem: decomposition and computation, Mathematics of 
Operations Research, 1987; 12 (2): 262–268, doi:10.1287/moor.12.2.262.  

[6] Berry D and Fristedt B. Bandit Problems – Sequential Allocation of Experiments. 1985; London: Chapman and 
Hall.  

[7] Connor, Jason T, Jordan J Elm, Kristine R. Broglio (2013) Bayesian adaptive trials offer advantages in 
comparative effectiveness trials: an example in status epilepticus. Journal of Clinical Epidemiology 66:S130-S137. 

[8] Barnett, Helen Yvette, Sofia S. Villar, Helena Geys, Thomas Jaki (2020) A novel statistical test for treatment 
differences in clinical trials using a response-adaptive forward-looking Gittins Index Rule. Biometrics 79:86-97. 

[9] Chick, Stephen E., Noah Gans, Özge Yapar (2022) Bayesian sequential learning for clinical trials of multiple 
correlated medical interventions. Management Science 68(7):4919-4938. 

[10] Robertson, David S., Kim May Lee, Boryana C. Lopez-Kolkovska, Sofia S. Villar (2023) Response-adaptive 
randomization in clinical Trials: From myths to practical considerations. Statistical Science, 38(2):185-208. 

[11] Villar, Sofia S. James Wason, Jack Bowden (2015) Response-adaptive randomization for multi-arm clinical 
trials using the forward-looking Gittins Index rule. Biometrics 71:969-978. 

[12] Hauser JR, Urban G, Liberali G and Braun M. Website Morphing. Marketing Science. 2009; 28, 2, (March-
April), 202-224. 

[13] Gittins J, Glazebrook K and Weber R. Multi-armed bandit allocation indices. 2011; London: Wiley.  

[14] FDA (2019) Adaptive designs for clinical trials of drugs and biologics: Guidance for industry. Biostatistics 
(November) 

[15] Pallmann, Philip , Alun W. Bedding, Babak Choodari-Oskooei, Munyaradzi Dimairo, Laura Flight, Lisa V. 
Hampson, Jane Holmes, Adrian P. Mander, Lang’o Odondi, Matthew R. Sydes, Sofía S. Villar, James M. S. Wason, 
Christopher J. Weir, Graham M. Wheeler, Christina Yap, Thomas Jaki (2018) Adaptive designs in clinical trials: 

https://doi.org/10.1186/s12872-017-0686-z


Real-time Adaptive Design     27 

why use them, and how to run and report them. MBC Medicine 16(29):1-15. 

[16] FDA. Adaptive designs for clinical trials of drugs and biologics: Guidance for industry. Biostatistics. Food and 
Drug Administration, Center for Drug Evaluation and Research, November 2019; FDA-2018-D-3124. 

[17] Gittins, J. C. 1979. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical. Society. 
Ser. B 41(2) 148–177, plus commentary 

[18] The GUSTO Investigators. An International Randomized Trial Comparing Four Thrombolytic Strategies for 
Acute Myocardial Infarction. NEJM. 1993; 329 (10): 673:682 

[19] The European trial on reduction of cardiac events with perindopril in stable coronary artery disease 
investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary 
artery disease: randomized, double-blind, placebo-controlled, multicenter trial (the EUROPA study). Lancet. 2003; 
362:782-788 

[20] Galbraith R. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med. 
1988;7: 889–94. 

[21] Flehinger BJ, TA Louis, Herbert Robbins, BH Singer (1972) Reducing the number of inferior treatments in 
clinical trials, PNAS 69(10):2993-2994. 

[22] Pocock S. Clinical Trials. A Practical Approach. 1983; London: Wiley. 

[23] Hadad, Vitor, David A. Hirshberg, Ruohan Zhan, Stefan Wager, Susan Athey (2021) Confidence intervals for 
policy evaluation in adaptive experiments. PNAS 118(15):1-10. 

[24] Wathen JK, Thall PF (2017) A simulation study of outcome adaptive randomization in multi-arm clinical trials. 
Clinical Trials 14(5):432-440. 

[26] The Adaptive Platform Trials Coalition., Angus, D.C., Alexander, B.M. et al. Author Correction: Adaptive 
platform trials: definition, design, conduct and reporting considerations. Nat Rev Drug Discov 18, 808 (2019). 
https://doi.org/10.1038/s41573-019-0045-0. 

[27] Villar S, Bowden J and Wason J. Multi-armed bandit models for the optimal design of clinical trials: benefits 
and challenges. Statistical science: a review” Journal of the Institute of Mathematical Statistics. 2015; 30(2):199–
215. 

[28] Villar SS, Bowden J and Wason J. Response-adaptive designs for binary responses: how to offer patient benefit 
while being robust to time trends? Pharmaceut Stat 2018; 17: 182–19 
 


	Real-time Adaptive Design for Clinical Trials
	Real-time Adaptive Design for Clinical Trials
	Real-time Adaptive Design for Clinical Trials
	1. Introduction
	2. Methods: process/principle, calculation, software
	3. Results
	4. Discussion
	References

	[1] Cheng J, Zhang W, Zhang X, et al. Effect of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on All-Cause Mortality, Cardiovascular Deaths, and Cardiovascular Events in Patients With Diabetes Mellitus: A Meta-analysis....
	[2] Tai, C., Gan, T., Zou, L. et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on cardiovascular events in patients with heart failure: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disor...
	[3] Baldetti L, Melillo F, Moroni F, Gallone G, Pagnesi M, Venuti A, Beneduce A, Calvo F, Gramegna M, Godino C, D'Ascenzo F, De Ferrari GM, Capodanno D, Cappelletti AM. Meta-Analysis Comparing P2Y12 Inhibitors in Acute Coronary Syndrome. Am J Cardiol....
	[4] Berry DA. A case for Bayesianism in clinical trials. Stat Med. 1993 Aug;12(15-16):1377-93; discussion 1395-1404. doi: 10.1002/sim.4780121504. PMID: 8248653.
	[5] Katehakis M and Veinott. A. The multi-armed bandit problem: decomposition and computation, Mathematics of Operations Research, 1987; 12 (2): 262–268, doi:10.1287/moor.12.2.262.
	[6] Berry D and Fristedt B. Bandit Problems – Sequential Allocation of Experiments. 1985; London: Chapman and Hall.
	[7] Connor, Jason T, Jordan J Elm, Kristine R. Broglio (2013) Bayesian adaptive trials offer advantages in comparative effectiveness trials: an example in status epilepticus. Journal of Clinical Epidemiology 66:S130-S137.
	[8] Barnett, Helen Yvette, Sofia S. Villar, Helena Geys, Thomas Jaki (2020) A novel statistical test for treatment differences in clinical trials using a response-adaptive forward-looking Gittins Index Rule. Biometrics 79:86-97.
	[9] Chick, Stephen E., Noah Gans, Özge Yapar (2022) Bayesian sequential learning for clinical trials of multiple correlated medical interventions. Management Science 68(7):4919-4938.
	[10] Robertson, David S., Kim May Lee, Boryana C. Lopez-Kolkovska, Sofia S. Villar (2023) Response-adaptive randomization in clinical Trials: From myths to practical considerations. Statistical Science, 38(2):185-208.
	[11] Villar, Sofia S. James Wason, Jack Bowden (2015) Response-adaptive randomization for multi-arm clinical trials using the forward-looking Gittins Index rule. Biometrics 71:969-978.
	[12] Hauser JR, Urban G, Liberali G and Braun M. Website Morphing. Marketing Science. 2009; 28, 2, (March-April), 202-224.
	[13] Gittins J, Glazebrook K and Weber R. Multi-armed bandit allocation indices. 2011; London: Wiley.
	[14] FDA (2019) Adaptive designs for clinical trials of drugs and biologics: Guidance for industry. Biostatistics (November)
	[15] Pallmann, Philip , Alun W. Bedding, Babak Choodari-Oskooei, Munyaradzi Dimairo, Laura Flight, Lisa V. Hampson, Jane Holmes, Adrian P. Mander, Lang’o Odondi, Matthew R. Sydes, Sofía S. Villar, James M. S. Wason, Christopher J. Weir, Graham M. Whee...
	[16] FDA. Adaptive designs for clinical trials of drugs and biologics: Guidance for industry. Biostatistics. Food and Drug Administration, Center for Drug Evaluation and Research, November 2019; FDA-2018-D-3124.
	[17] Gittins, J. C. 1979. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical. Society. Ser. B 41(2) 148–177, plus commentary
	[18] The GUSTO Investigators. An International Randomized Trial Comparing Four Thrombolytic Strategies for Acute Myocardial Infarction. NEJM. 1993; 329 (10): 673:682
	[19] The European trial on reduction of cardiac events with perindopril in stable coronary artery disease investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomized, doub...
	[20] Galbraith R. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med. 1988;7: 889–94.
	[21] Flehinger BJ, TA Louis, Herbert Robbins, BH Singer (1972) Reducing the number of inferior treatments in clinical trials, PNAS 69(10):2993-2994.
	[22] Pocock S. Clinical Trials. A Practical Approach. 1983; London: Wiley.
	[23] Hadad, Vitor, David A. Hirshberg, Ruohan Zhan, Stefan Wager, Susan Athey (2021) Confidence intervals for policy evaluation in adaptive experiments. PNAS 118(15):1-10.
	[24] Wathen JK, Thall PF (2017) A simulation study of outcome adaptive randomization in multi-arm clinical trials. Clinical Trials 14(5):432-440.
	[26] The Adaptive Platform Trials Coalition., Angus, D.C., Alexander, B.M. et al. Author Correction: Adaptive platform trials: definition, design, conduct and reporting considerations. Nat Rev Drug Discov 18, 808 (2019). https://doi.org/10.1038/s41573...
	[27] Villar S, Bowden J and Wason J. Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges. Statistical science: a review” Journal of the Institute of Mathematical Statistics. 2015; 30(2):199–215.

