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eAppendix A.  Randomization and Endpoints for GUSTO-1 and EUROPA RCTs 

 
 

 eFigure 1: RCT Randomizations (in blue, orange and gray) and endpoints (in 
green) in GUSTO-1    

 
The dots at the bottom of this graph correspond to the number of patients that were randomized 
by the RCT in each day of the GUSTO-1 trial. This information is shown separately per treat-
ment, using a color code. Blue corresponds to RCT randomizations to t-PA+Heparin (arm 1). 
Red corresponds to RCT randomizations to SK+Heparin (arm 2). Gray corresponds to t-
PA+SK+Heparin (arm 3). 
 
This figure also presents, in the green solid line on the top of the graph, the number of endpoints 
that were observed in each day of the trial. This is the total number of daily endpoints summed 
over all three arms.  
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eFigure 2: RCT Randomizations (in blue, orange and gray) and endpoints (in 
green) in EUROPA    

 
The dots at the bottom of this graph correspond to the number of patients that were randomized 
by the RCT in each day of the GUSTO-1 trial. This information is shown separately per treat-
ment, using a color code. Blue corresponds to RCT randomizations to Perindopril (arm 1). Red 
corresponds to RCT randomizations to placebo (arm 2).   
 
This figure also presents, in the green solid line on the top of the graph, the number of endpoints 
that were observed in each day of the trial. This is the total number of daily endpoints summed 
over the two arms. 
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eAppendix B.  MAB Odds Ratio   
eFigure 3: Changes in MAB Odds Ratio During the Trial   

 
This figure compares the odds ratio for all pairs of arms in the GUSTO-1 MAB simulation. It presents the 
evolution of the pairwise odds ratio of arms as more sample is added (red lines). Confidence intervals 
(95% level) plotted above and below the expected odds ratios (black lines). 
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Similar behavior is found for the EUROPA trial. For the exact estimates and confidence inter-

vals, please refer to the manuscript and Table 2. 
 
eAppendix C.  Simulation Procedure and Details 

 
e3.1 Simulation procedure 

The MAB simulation can be run for any number of replicates. The number of rep-

licates is set in the file “Parameters.R”. All reported results in the manuscript are results 

averaged across the 100 replicates. The MAB code is in the file “MAB.R”.  

 

Here are the main steps: 

 

Step I: Load parameters and set seed.  

 When the parameter file indicates that a single replicate is to be run, the system 

uses a fixed seed. When more than one replicate is to be run, the system uses different 

random seeds in each replicate. Results must be averaged across replicates. 

 

Step II: Load support functions. 

 

Step III: Load data. 

 

Step IV Loop over all replicates (this the main part of the code) 

 

     Step IV.1. Build the pools of patients for this replicate. 

The original RCT (GUSTO-1 and EUROPA) assigned one set of patients to each 

arm (treatment). We refer to each of these sets of patients as a “pool of patients” 

for that treatment . These pools will be used in step IV.4.2., when the MAB algo-

rithm draws (with replacement) from these pools when making its assignments. 

 

     Step IV.2. Load priors for αm and βm for this replicate. 

These priors are set in the file “Parameters.R”. 
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     Step IV.3 Initialize intermediate data structures   

See the file “Data dictionary.txt” for details on the intermediate variables. 

 

     Step IV.4. For each day i of the trial in this replicate, perform the following:  

 

Step IV.4.1 DECIDE: select arm mi* to use on day i. This is the optimality step  

Select the optimal treatment, mi* given current αm and βm parameters of our Beta 

distribution over treatment probabilities1, and given the value of the Gittins index 

on day i. The Gittins index balances, on a daily basis, the amount of exploration 

and exploitation the system does (Gittins, 2011; Hauser et al. 2009). For details 

on the optimality step, please refer to §e3.2. 

 

Step IV.4.2 BOOKKEPING: MAB draws patients from the pool of arm mi*. 

- Compute the number of patients Ni that were randomized by the RCT on day i.  

- Assign Ni patients to optimal treatment given by mi* by drawing with replace-

ment Ni patients from the pool of patients that were randomized by the original 

RCT to the treatment mi*. 

 

Step IV.4.3 LEARN  

Learn from the endpoints observed for all the patients that had been assigned by 

the MAB and had endpoints on day i, by updating αm and βm.  For details on this 

learning step, please refer to §e3.2. 

 

Step IV.5: Summarize results of the original RCT2.  

 

Step IV.6: Summarize the results of this replicate. 

 

Step IV.7: Save all outputs on .csv files. 

                                                 
1 For ease of reading, we are omitting the subscripts n and i from αm and βm.    
2 The results of summarizing the RCT is the same in all replicates 
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e3.2 Notation and technical details  
 
About the Optimality step (# 4.1) 
Our MAB assigns patients to treatments by selecting the optimal treatment mi*, given 

the updated parameters αmi and βmi of the Beta distribution for the endpoint probabilities 

for each treatment. We keep track of one independent Gittins index per arm. More for-

mally, mi*= argmax {-G(αmi, βmi)}, where G is the Gittins indexi.  The Gittins index G is 

the solutionii to the following Beta-Bernoulli dynamic program, defined for each treat-

ment independently:   

𝑅𝑅(𝛼𝛼𝑚𝑚𝑚𝑚 ,𝛽𝛽𝑚𝑚𝑚𝑚) = 𝑚𝑚𝑖𝑖𝑖𝑖 �
𝐺𝐺

1 − 𝑎𝑎
,

𝛼𝛼𝑚𝑚𝑚𝑚
𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝑚𝑚𝑚𝑚

[1 + 𝑎𝑎𝑅𝑅(𝛼𝛼𝑚𝑚𝑚𝑚 + 1,𝛽𝛽𝑚𝑚𝑚𝑚)] +
𝛽𝛽𝑚𝑚𝑚𝑚

𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝑚𝑚𝑚𝑚
𝑎𝑎𝑅𝑅(𝛼𝛼𝑚𝑚𝑚𝑚 ,𝛽𝛽𝑚𝑚𝑚𝑚 + 1)� 

 

 

About the Learning step (#4.3) 

The learning step is based on the updating of the Beta priors, αmi and βmi, with the Ber-

noulli observations δi, representing the endpoints observed for the ith patient present in 

the arm m on that day.  

More formally: 

 

αmi =αm,i-1 + δi   in case of death or cardiovascular event 

βmi = βm,i-1 + δi  in case of survival or absence of a cardiovascular event 

 
About the Endpoints  

In GUSTO-1, δI is death or survival at 30-days since randomization. In EUROPA, δi is a 

composite of cardiovascular mortality, non-fatal MI, and resuscitated cardiac arrest at 

any point in the trial. 
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eAppendix D.  Frequentists Analysis and Statistical Procedures 
 
 
1. Mortality  
 
1.a Testing the mortality rate within a replicate. 

 
In GUSTO-1, the goal of the trial is to detect a 15% reduction in the mortality of 8% hence we 

compare arms against 6.8%. In EUROPA the goal was to detect a 20% reduction in the out-

come variable of 10% hence we compare the treatment against 8%. We are assessing whether 

the mortality of a single sample is significantly different from the known or hypothesized popula-

tion mean. In our case, the hypothesized mean is p0 = 6.8%(GUSTO) and p0 = 8%(EUROPA). 

Thus, we perform a single-sample test against the null that there is no difference between the 

treatment and p0.  

 

The z-test is appropriate if the population variance is known.  For proportions, the vari-

ance is p0 (1–  p0)  so the population variance is known because we know  p0. More specifically, 

we use:  

𝑍𝑍 =
�̂�𝑝 − 𝑝𝑝0

�𝑝𝑝0(1 − 𝑝𝑝0)
𝑖𝑖  

 

  

Where p0 is 6.8% for GUSTO and 8% for EUROPA, and n is the sample size. The resulting Z is 

then compared to the critical value at 95% (i.e., 1.96) to count how many replicates pass the 

threshold. 

The confidence interval is obtained in a similar way except that we use the sample vari-

ance, i.e., �̂�𝑝(1 − �̂�𝑝), rather than the hypothesized population variance:  

�̂�𝑝 ± ��̂�𝑝(1 − �̂�𝑝)
𝑖𝑖

 

where Z is 1.96. 
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1.b Across replicates 
 

Part I: Statistical significance of mortality estimates across all replicates 
 

First, we want to have an idea of how much the replicates vary around the estimate of mortality. 

Thus, we count for how many replicates the threshold of 1.96 has been met by the Z value in 

each replicate. 

 
Part II: Confidence Intervals of the mortality estimates.  
 

We want to obtain bounds (a bootstrapped CI) to get some measure of how widely the esti-

mates move around across replicates. This follows two steps: 

 

- First, we average the mortality estimate across all replicates to obtain �̅�𝑥.  

- Second, because we do not know the variance (we do not have a hypothesized p), we 

use the -test to derive the CIs, as follows. 

𝐶𝐶𝐶𝐶 = �̅�𝑥 ± 𝑡𝑡(
𝑠𝑠
√𝑖𝑖

) 

Where s is the standard deviation of all the replicates’ mortality estimates, t is the critical 

value from the t-distribution with n-1 degrees of freedom, and �̅�𝑥 is the sample mean of all repli-

cates’ mortality estimates. (In R, this is produced by the function t.test(OR_repli-

cates,mu=1)$conf.int, but we are currently implementing in Excel).  We compared these confi-

dence intervals with the bootstrapped confidence intervals and found they are consistent for 

both trials. 

 

2. Odds ratio 
 
2.a Obtaining and testing the odds ratio within a replicate 
We compute the p-value and the CIs of the odds ratio, within a replicate, using the Wald 

method. We fit a univariate logistic regression model using the glm package, which automati-

cally provides us the Wald p-value and CIs as follows: 

 

- all_draws12  is a matrix with two columns:  "outcome" and "arm". 

- model12 <-  glm(outcome ~ arm,  data      = as.data.frame(all_draws12), family = binomial) 
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- ORstats12  <-   odds.ratio(model12, method ="wald", conf.level=0.95) 

 

Then we extract: 

 

- the CI using ORstats12$`2.5 %` and ORstats12$`97.5 %` 
- the wald p-value using ORstats12$p 

- the OR using ORstats12$OR 

 

We test if the OR ratio within a replicate is different from 1.0 we inspect whether the Wald p-

value reaches the typical 0.05 threshold. We are assuming the odds.ratio function in the ques-

tionr package tests against the null hypothesis that the odds ratio is 1.0, not 0. 

 

2.b Across replicates 
 
Part I: Statistical significance of odds ratio across all replicates 
We count for how many replicates the threshold of 0.05 has been met by the Wald p-values. 

 

Part II: CIs of the odds ratio estimates.  
We follow the same procedure we used for the CIs of the mortality estimates across replicates: 

because we do not know the variance (we do not have a hypothesized p), we use the t-test to 

derive the CIs, as follows: 

 

𝐶𝐶𝐶𝐶 = �̅�𝑥 ± 𝑡𝑡(
𝑠𝑠
√𝑖𝑖

) 

 

Where s is the standard deviation of all the replicates’ odds ratio, t is the critical value from 

the t-distribution with n-1 degrees of freedom, and �̅�𝑥 is the sample mean of all replicates’ odds 

ratio estimates. We compared these odds ratio (OR) confidence intervals with the bootstrapped 

OR confidence intervals and found they are consistent for both trials. 

 

 
 
  



Real-time Adaptative Design for Clinical Trials – Online Appendix OA11 

eReferences    
 

Gittins, J.C., K. Glazebrook, and R. Weber. 2011. Multi-armed bandit allocation indices. London: Wiley.  

Hauser JR, Urban G, Liberali G and Braun M. Website Morphing.  Marketing Science. 2009; 28, 2, 
(March-April), 202-224. 

 


	Real-time Adaptative Design for Clinical Trials
	Supplementary Online Content
	Online Appendix

