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1. Proofs with stochastic supply (EC.2.1)

We provide the formulation of the platform’s problem as a function of the allocation terms, using a

similar expression to Lemma 1. We omit the full formulation and the proof of this result, but these

follow from identical arguments as earlier. The first term captures profits when Agent 1 is served

before Agent 2 and S2 arrive. The second term captures profits when S2 arrives before Agent 2

(ω < τ). The third term captures profits instances when Agent 2 arrives before S2 (ω > τ) and there

is no supply shortage. The last term captures profits at time τ when there is a supply shortage.

Lemma 1. Problem (PS) is equivalent to:

max
T1,T

ω
1 ,Tτ

1
Tτ
12,T

τ
2 ,Tτ

2S

Π̂ =

∫ θ

θ

e−(r+λ+µ)T1(θ1)
(
e−δT1(θ1)φ(θ1)− c

)
f(θ1)dθ1 +

∫ θ

θ

∫ ∞

0

µe−(r+λ+µ)ωΠ̂ω(θ1)dωf(θ1)dθ1

+

∫ θ

θ

∫ T1(θ1)

0

λe−(r+λ+µ)τ Π̂τ (θ1)dτf(θ1)dθ1 +

∫ θ

θ

∫ ∞

T1(θ1)

λe−(r+λ+µ)τ Π̂τ
2S(θ1)dτf(θ1)dθ1

subject to monotonicity constraints, where:

Π̂τ (θ1) =

∫ θ

θ

e−rTτ
12(θ1,θ2)

(
e−δ(τ+Tτ

12(θ1,θ2))φ(θ1)+ e−δTτ
12(θ1,θ2)φ(θ2)− c

)
f(θ2)dθ2

+

∫ θ

θ

[
e−rTτ

1 (θ1,θ2)
(
e−δ(τ+Tτ

1 (θ1,θ2))φ(θ1)− c
)
+ e−rTτ

2 (θ1,θ2)
(
e−δ(Tτ

2 (θ1,θ2))φ(θ2)− c
)]

f(θ2)dθ2.

Π̂τ
2S(θ1) =

∫ ∞

τ

µe−µ(ω−τ)

∫ θ

θ

e−r(ω+T
τ,ω
2 (θ2)−τ)

(
e−δ(ω+T

τ,ω
2 (θ2)−τ)φ(θ2)− c

)
f(θ2)dθ2dω.

Π̂ω(θ1) = e−(r+λ)Tω
1 (θ1)

(
e−δ(ω+Tω

1 (θ1))φ(θ1)− c
)
+

∫ ω+Tω
1 (θ1)

ω

λe−(r+λ)(τ−ω)Π̂τ (θ1)dτ.

1.1. Proof of Theorem EC.1

Derivation of Π̂τ
2S(θ1). If there is no supply shortage when Agent 2’s arrives, the mechanism

unfold as in the baseline setting. Otherwise, the platform serves Agent 2 at time t= ω if and only

if e−δ(ω−τ)φ(θ2)≥ c:

T τ,ω
2 (θ2) =

{
0, if e−δ(ω−τ)φ(θ2)≥ c,

∞, if e−δ(ω−τ)φ(θ2)< c.

1
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This optimal policy will result in the value of Π̂τ
2S(θ1):

Π̂τ
2S(θ1) =

∫ ∞

τ

µe−(r+µ)(ω−τ)

∫ θ

φ−1(ceδ(ω−τ))

[
e−δ(ω−τ)φ(θ2)− c

]
f(θ2)dθ2dω. (1)

Derivation of Π̂τ (θ1). At time τ when Agent 2 arrives before S2 and there is no supply shortage,

the allocation is identical to the baseline setting. The platform’s expected discounted profit is:

Π̂τ (θ1) =


∫ θ

θc
(φ(θ2)− c)f(θ2)dθ2 if Agent 1 has been served,

e−δτφ(θ1)− c+
∫ θ

θ0
φ(θ2)f(θ2)dθ2 if Agent 1 is present and e−δτφ(θ1)≥ c,∫ θ

φ−1(c−e−δτφ(θ1))
(e−δτφ(θ1)− c+φ(θ2))f(θ2)dθ2 if Agent 1 is present and e−δτφ(θ1)< c.

For notational convenience, we define:

Π̃τ
2(θ1) =

∫ θ

θc

(φ(θ2)− c)f(θ2)dθ2.

Π̃τ
12(θ1) =

e−δτφ(θ1)− c+
∫ θ

θ0
φ(θ2)f(θ2)dθ2 if e−δτφ(θ1)≥ c,∫ θ

φ−1(c−e−δτφ(θ1))
(e−δτφ(θ1)− c+φ(θ2))f(θ2)dθ2 if e−δτφ(θ1)< c.

Derivation of Π̂ω(θ1). At time τ when S2 arrives before Agent 2, the platform chooses T ω
1 (θ1) to

maximize Π̂ω(θ1). Recall that T
ω
1 (θ1) =∞ when Agent 1 is not on platform at ω (i.e., if T1(θ1)<ω).

Let us now assume that Agent 1 is on the platform (i.e., if ω≤ T1(θ1)). The problem is equivalent

to the platform’s problem at time t= 0 in the baseline setting (when both suppliers are present

on the platform), except that the term (e−δT1(θ1)φ(θ1)− c) is replaced by (e−δ(ω+Tω
1 (θ1))φ(θ1)− c)

(since Agent 1’s virtual value has decayed by a factor e−δω, and time is updated from t= 0 to t= ω.

Following the same reasoning as in the proof of Theorem 1, we obtain:

T ω
1 (θ1) =


0, if ω≤ T1(θ1) and e−δωφ(θ1)≥φ(ζ),

∞, if ω≤ T1(θ1) and e−δωφ(θ1)<φ(ζ),

∞, if ω > T1(θ1).

The platform’s expected discounted profit is given by:

Π̂ω(θ1) =


∫∞
ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτ if Agent 1 has been served,

e−δωφ(θ1)− c+
∫∞
ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτ if Agent 1 is on the platform and e−δωφ(θ1)≥φ(ζ),∫∞

ω
λe−(r+λ)(τ−ω)Π̃τ

12(θ1)dτ. if Agent 1 is on the platform and e−δωφ(θ1)<φ(ζ).

For notational convenience, we define:

Π̃ω
∅ (θ1) =

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτ

Π̃ω
1 (θ1) =

{
e−δωφ(θ1)− c+

∫∞
ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτ if e−δωφ(θ1)≥φ(ζ),∫∞

ω
λe−(r+λ)(τ−ω)Π̃τ

12(θ1)dτ. if e−δωφ(θ1)<φ(ζ).
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Derivation of T1(θ1). We follow the same steps as in the proof of Theorem 1 to show that

T1(θ1) is a step function: it is equal to 0 when θ1 is larger than a threshold ζ̂, and to ∞ otherwise.

Let us denote by π(θ1) the platform’s profit contingent on θ1; from Lemma EC.3, we have

π(θ1) = e−(r+λ+µ)T1(θ1)
(
e−δT1(θ1)φ(θ1)− c

)
+

∫ ∞

0

µe−(r+λ+µ)ωΠ̂ω(θ1)dω

+

∫ T1(θ1)

0

λe−(r+λ+µ)τ Π̂τ (θ1)dτ +

∫ ∞

T1(θ1)

λe−(r+λ+µ)τ Π̂τ
2S(θ1)dτ.

Since any outcome that the platform can achieve with Agent 2 only can also be achieved with both

agents, the sum of the last three terms is maximized with T1(θ1) =∞. Moreover, when θ1 < θc,

the first term is also maximized by choosing T1(θ1) =∞ (as in the proof of Theorem 1). Thus,

T1(θ1) =∞ for each θ1 ∈ [θ, θc). We henceforth focus on the interval [θc, θ].

Claim 1. For a given θ1 ∈ [θc, θ], let T θ1 =− 1
δ
log c

φ(θ1)
. Then the following holds:

For any θ1 ∈ [θc, θ], if T1(θ1) is finite, then T1(θ1)<T θ1.

The proof is identical to that of Claim 1.

Claim 2. T1(θ1) = 0, or T1(θ1) =∞, for each θ1 ∈ [θ, θ].

Proof of Claim 2. By contradiction, if T1(θ1)∈ (0, T θ1), the first-order condition yields:

−
[
(r+λ+µ+ δ)e−δT1(θ1)φ(θ1)− (r+λ+µ)c

]
+µ

(
Π̃ω

1 (θ1)
∣∣∣
ω=T1(θ1)

− Π̃ω
∅ (θ1)

∣∣∣
ω=T1(θ1)

)
+λ

(
Π̃τ

12(θ1)
∣∣∣
τ=T1(θ1)

− Π̂τ
2S(θ1)

∣∣∣
τ=T1(θ1)

)
= 0. (2)

First, T1(θ1)<T θ1 implies that e−δτφ(θ1)≥ c. Therefore:

Π̃τ
12(θ1)

∣∣∣
τ=T1(θ1)

= e−δT1(θ1)φ(θ1)− c+

∫ θ

θ0

φ(θ2)f(θ2)dθ2.

Moreover, we know that T ω(θ1)
∣∣
ω=T1(θ1)

= 0. Indeed, since it is optimal to provide an individual

service to Agent 1 at time T1(θ1) in the absence of S2, it is also optimal to provide an immediate

individual service to them in case S2 arrives at time ω= T1(θ1). We thus have:

Π̃ω
1 (θ1)

∣∣∣
ω=T1(θ1)

= e−δT1(θ1)φ(θ1)− c+

∫ ∞

T1(θ1)

λe−(r+λ)(τ−T1(θ1))Π̃τ
2(θ1)dτ

We obtain from Equation (2):

−(r+ δ)e−δT1(θ1)φ(θ1)+ rc+λ

∫ θ

θ0

φ(θ2)f(θ2)dθ2 −λΠ̂τ
2S(θ1)

∣∣∣
τ=T1(θ1)

= 0.
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Recall that Π̂τ
2S(θ1)

∣∣∣
τ=T1(θ1)

is constant (equal to Π̂τ
2S). Therefore, all the terms except the first one

are independent from T1(θ1). Since −e−δT1φ(θ1) is increasing in T1, we obtain:

∂π(θ1)

∂T1

∣∣∣
T1(θ1)+ε

> 0, for ε > 0 sufficiently small.

This contradicts the optimality of T1(θ1): the platform can strictly increase their profit by

marginally delaying service to Agent 1. This completes the proof of Claim 2. □

We now know that the optimal value of T1(θ) is 0 or ∞. The next step is to determine for which

values of θ1 it is optimal to set T1(θ) = 0 as opposed to T1(θ) =∞. We define:

∆(θ1) = π(θ1)
∣∣
T1(θ1)=0

−π(θ1)
∣∣
T1(θ1)=∞

=

(
φ(θ1)− c+

∫ ∞

0

µe−(r+λ+µ)ωΠ̃ω
∅ (θ1)dω+

∫ ∞

0

λe−(r+λ+µ)τ Π̂τ
2S(θ1)dτ

)
−
(∫ ∞

0

µe−(r+λ+µ)ωΠ̃ω
1 (θ1)dω+

∫ ∞

0

λe−(r+λ+µ)τ Π̃τ
12(θ1)dτ

)
, (3)

We show that ∆(θ1) is increasing, which proves that T1(θ1) follows a cutoff rule—there exists ζ̂

such that T1(θ1) = 0 if θ≥ ζ̂ and T1(θ1) =∞ otherwise. We also show that ∆(ζ)< 0 so that ζ̂ > ζ.

Claim 3. ∆(θ1) is strictly increasing with θ1.

Proof of Claim 3 Let T̂θ1 ≥ 0 be defined such that e−δT̂θ1φ(θ1) = φ(ζ), for any θ1 ≥ ζ. For any

θ1 < ζ, we define T̂θ1 = 0. We get:∫ ∞

0

µe−(r+λ+µ)ωΠ̃ω
∅ (θ1)dω=

∫ ∞

0

µe−(r+λ+µ)ω

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτdω (4)∫ ∞

0

µe−(r+λ+µ)ωΠ̃ω
1 (θ1)dω=

∫ T̂θ1

0

µe−(r+λ+µ)ω

(
e−δωφ(θ1)− c+

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτ

)
dω

+

∫ ∞

T̂θ1

µe−(r+λ+µ)ω

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
12(θ1)dτdω. (5)

Then by plugging Equations (4) and (5) into Equation (3), we get:

∆(θ1) =φ(θ1)− c+

∫ ∞

0

µe−(r+λ+µ)ω

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτdω+

∫ ∞

0

λe−(r+λ+µ)τ Π̂τ
2S(θ1)dτ

−
∫ T̂θ1

0

µe−(r+λ+µ)ω

(
e−δωφ(θ1)− c+

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτ

)
dω

−
∫ ∞

T̂θ1

µe−(r+λ+µ)ω

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
12(θ1)dτdω −

∫ ∞

0

λe−(r+λ+µ)τ Π̃τ
12(θ1)dτ.

We write:

φ(θ1) =

∫ T̂θ1

0

µe−(r+λ+µ)ωe−δωφ(θ1)dω+

∫ ∞

T̂θ1

µe−(r+λ+µ)ωe−δωφ(θ1)dω+

∫ ∞

0

(r+ δ+λ)e−(r+δ+λ+µ)ωφ(θ1)dω︸ ︷︷ ︸
= r+δ+λ

r+δ+λ+µφ(θ1)
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c=

∫ T̂θ1

0

µe−(r+λ+µ)ωcdω+

∫ ∞

T̂θ1

µe−(r+λ+µ)ωcdω+

∫ ∞

0

(r+λ)e−(r+λ+µ)ωcdω︸ ︷︷ ︸
= r+λ

r+λ+µ c

.

By re-arranging the terms, we obtain:

∆(θ1) =
r+ δ+λ

r+ δ+λ+µ
φ(θ1)−

r+λ

r+λ+µ
c︸ ︷︷ ︸

Constant

+

∫ ∞

0

λe−(r+λ+µ)τ Π̂τ
2S(θ1)dτ︸ ︷︷ ︸

Constant

−
∫ ∞

0

λe−(r+λ+µ)τ Π̃τ
12(θ1)dτ

+

∫ ∞

T̂θ1

µe−(r+λ+µ)ω

[
eδωφ(θ1)− c+

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτ −

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
12(θ1)dτ

]
︸ ︷︷ ︸

=∆ω(θ1)

dω

We first show that r+δ+λ
r+δ+λ+µ

φ(θ1)−
∫∞
0

λe−(r+λ+µ)τ Π̃τ
12(θ1)dτ is non-decreasing in θ1. By following

the exact same procedure as earlier (by replacing the term λ by the term λ+µ in the exponential

functions and in the denominators), we have:

r+ δ+λ

r+ δ+λ+µ
φ(θ1)−

∫ ∞

0

λe−(r+λ+µ)τ Π̃τ
12(θ1)dτ =Constant+

r+ δ

r+ δ+λ+µ
φ(θ1)

+

∫ ∞

T θ1

λe−(r+λ+µ)τY τ (θ1)dτ −
δλe−(r+λ+µ)T θ1F (θ0)

(r+λ+µ)(r+ δ+λ+µ)
c,

where Y τ (θ1) is defined as in the proof of Theorem 1:

Y τ (θ1) =

∫ φ−1(c−e−δτφ(θ1))

θ0

(
e−δτφ(θ1)− c+φ(θ2)

)
f(θ2)dθ2.

We know that φ(θ1) and T θ1 are non-decreasing in θ1. Moreover, using the exact same arguments

as in the proof of Theorem 1, we also know that
∫∞
T θ1

λe−(r+λ+µ)τY τ (θ1)dτ is non-decreasing in θ1.

This proves that r+δ+λ
r+δ+λ+µ

φ(θ1)−
∫∞
0

λe−(r+λ+µ)τ Π̃τ
12(θ1)dτ is non-decreasing in θ1.

Let us now prove that
∫∞
T̂θ1

µe−(r+λ+µ)ω∆ω(θ1)dω is non-decreasing in θ1. This is clearly satisfied

when θ1 < ζ since for such values of θ1 we have T̂ (θ1) = 0, and we know that ∆ω(θ1) is increasing

in θ1. We now prove it for θ1 ≥ ζ.

1. For any θ1, θ
′
1 ∈ [ζ, θ], we have T θ1 − T̂θ1 = T θ′1

− T̂θ′1
≥ 0. This directly comes from the following

definitions e−δT θ1φ(θ1) = e
−δT θ′1φ(θ′1) = c and e−δT̂θ1φ(θ1) = e

−δT̂θ′1φ(θ′1) =φ(ζ).

2. For any θ1, θ
′
1 ∈ [ζ, θ], we prove that ∆ω(θ1) =∆

ω−(T̂θ1
−T̂θ′1

)
(θ′1). Recall that:

∆ω(θ1) = e−δωφ(θ1)−c+

∫ ∞

0

λe−(r+λ)τ Π̃τ
2(θ1)dτ︸ ︷︷ ︸

Constant

−
∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
12(θ1)dτ.

By definition of T̂θ1 , e
−δ(T̂θ1

−T̂θ′1
)
φ(θ1) =φ(θ′1). Moreover, we prove that, for every τ > 0:

Π̃τ
12(θ1) = Π̃

τ−(T̂θ1
−T̂θ′1

)

12 (θ′1).
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To see this, recall that, for every τ ≥ 0 and every θ1 ∈ [θ, θ1]:

Π̃τ
12(θ1) =

e−δτφ(θ1)− c+
∫ θ

θ0
φ(θ2)f(θ2)dθ2 if τ < T θ1∫ θ

φ−1(c−e−δτφ(θ1))
(e−δτφ(θ1)− c+φ(θ2))f(θ2)dθ2 if τ ≥ T θ1

If τ < T θ1 , which implies that τ − (T̂θ1 − T̂θ′1
)<T θ′1

, we have:

Π̃τ
12(θ1) = e−δτφ(θ1)− c+

∫ θ

θ0

φ(θ2)f(θ2)dθ2 = e−δτe
δ(T̂θ1

−T̂θ′1
)
φ(θ′1)− c+

∫ θ

θ0

φ(θ2)f(θ2)dθ2 = Π̃
τ−(T̂θ1

−T̂θ′1
)

12 (θ1)

If τ ≥ T θ1 , which implies that τ − (T̂θ1 − T̂θ′1
)≥ T θ′1

, we have:

Π̃τ
12(θ1) =

∫ θ

φ−1(c−e−δτφ(θ1))

(
e−δτφ(θ1)− c+φ(θ2)

)
f(θ2)dθ2 =

∫ θ

θ0

(
e−δτφ(θ1)− c+φ(θ2)

)
f(θ2)dθ2 −Y τ (θ1)

We know from the proof of Theorem 1 that Y τ (θ′1) = Y
τ+

(
T̂θ1

−T̂θ′1

)
(θ1). Therefore:

Π̃τ
12(θ1) =

∫ θ

θ0

(
e−δτe

δ(T̂θ1
−T̂θ′1

)
φ(θ′1)− c+φ(θ2)

)
f(θ2)dθ2 −Y

τ−(T̂θ1
−T̂θ′1

)
(θ1) = Π̃

τ−(T̂θ1
−T̂θ′1

)

12 (θ′1)

As a result, we have:

∆ω(θ1) =Constant+ e−δωe
δ(T̂θ1

−T̂θ′1
)
φ(θ′1)−

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃
τ−(T̂θ1

−T̂θ′1
)

12 (θ′1)dτ

=Constant+ e−δωe
δ(T̂θ1

−T̂θ′1
)
φ(θ′1)−

∫ ∞

ω−(T̂θ1
−T̂θ′1

)

λe
−(r+λ)(τ+(T̂θ1

−T̂θ′1
)−ω)

Π̃τ
12(θ

′
1)dτ

=∆
ω−(T̂θ1

−T̂θ′1
)
(θ′1)

3. We conclude that
∫∞
T̂θ1

µe−(r+λ+µ)ω∆ω(θ1)dω is increasing in θ1. Let us consider θ1, θ
′
1 ∈ [ζ, θ]

such that θ1 > θ′1. We have:∫ ∞

T̂θ1

µe−(r+λ+µ)ω∆ω(θ1)dω=

∫ ∞

T̂θ1

µe−(r+λ+µ)ω∆
ω−(T̂θ1

−T̂θ′1
)
(θ′1)dω

= e
−(r+λ+µ)(T̂θ1

−T̂θ′1
)︸ ︷︷ ︸

<1

∫ ∞

T̂θ′1

µe−(r+λ+µ)ω∆ω(θ′1)dω︸ ︷︷ ︸
≤0 because ∆ω(θ′

1)≤ 0 for all ω ≥ T̂θ′1

>

∫ ∞

T̂θ′1

µe−(r+λ+µ)ω∆ω(θ′1)dω.

This completes the proof of Claim 3. □

Claim 4. It holds that ζ̂ ≥ ζ.
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Proof of Claim 4 It is sufficient to show that ∆(ζ)<= 0, that is, all else equal, the benefit of

serving Agent 1 immediately is lower when the second supplier has not arrived yet than when

there are two suppliers on the market. By definition of ζ, it is optimal to set T ω
1 (θ1)

∣∣
ω=0

=∞ for

all θ1 < ζ. As a result, for all θ1 < ζ, it is optimal to set T ω
1 (θ1) =∞ for all ω > 0. Hence:

Π̃ω
∅ (θ1) =

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
2(θ1)dτ

Π̃ω
1 (ζ) =

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
12(ζ)dτ

From Equation (3), it comes:

∆(ζ) =φ(ζ)− c+

∫ ∞

0

µe−(r+λ+µ)ω

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
2(ζ)dτdω+

∫ ∞

0

λe−(r+λ+µ)τ Π̂τ
2S(ζ)dτ

−
∫ ∞

0

µe−(r+λ+µ)ω

∫ ∞

ω

λe−(r+λ)(τ−ω)Π̃τ
12(ζ)dτdω−

∫ ∞

0

λe−(r+λ+µ)τ Π̃τ
12(ζ)dτ.

By developing the double integrals, we obtain:∫ ∞

ω=0

µe−(r+λ+µ)ω

∫ ∞

τ=ω

λe−(r+λ)(τ−ω)Π̃τ
12(ζ)dτdω=

∫ ∞

τ=0

λe−(r+λ)τ

∫ τ

ω=0

µe−µωΠ̃τ
12(ζ)dωdτ

=

∫ ∞

0

λe−(r+λ)τ Π̃τ
12(ζ)dτ −

∫ ∞

0

λe−(r+λ+µ)τ Π̃τ
12(ζ)dτ∫ ∞

ω=0

µe−(r+λ+µ)ω

∫ ∞

τ=ω

λe−(r+λ)(τ−ω)Π̃τ
2(ζ)dτdω=

∫ ∞

0

λe−(r+λ)τ Π̃τ
2(ζ)dτ −

∫ ∞

0

λe−(r+λ+µ)τ Π̃τ
2(ζ)dτ.

It yields:

∆(ζ) =φ(ζ)− c+

∫ ∞

0

λe−(r+λ)τ
(
Π̃τ

2(ζ)− Π̃τ
12(ζ)

)
dτ +

∫ ∞

0

λe−(r+λ+µ)τ
(
Π̂τ

2S(ζ)dτ − Π̃τ
2(ζ)

)
dτ

=+

∫ ∞

0

λe−(r+λ+µ)τ
(
Π̂τ

2S(ζ)dτ − Π̃τ
2(ζ)

)
dτ

<∆0(ζ).

The second equality stems from the fact that the platform is indifferent between serving or delaying

Agent 1 when both suppliers are present. The last inequality stems from the fact that the platform’s

future expected profit at time τ is larger when the second supplier has already arrived on the

platform. Formally:

Π̂τ
2S(ζ) =

∫ ∞

τ

µe−(r+µ)(ω−τ)

∫ θ

φ−1(ceδ(ω−τ))

[
e−δ(ω−τ)φ(θ2)− c

]
f(θ2)dθ2dω

≤
∫ ∞

τ

µe−(r+µ)(ω−τ)

∫ θ

θc

[
e−δ(ω−τ)φ(θ2)− c

]
f(θ2)dθ2dω (because ceδ(ω−τ) ≥ c)

<

∫ ∞

τ

µe−(r+µ)(ω−τ)

∫ θ

θc

[φ(θ2)− c]f(θ2)dθ2dω

=
µ

r+µ

∫ θ

θc

[φ(θ2)− c]f(θ2)dθ2
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<

∫ θ

θc

[φ(θ2)− c]f(θ2)dθ2

= Π̃τ
2(ζ).

This completes the proof of Claim 4. □

Finally, this allocation rule satisfies the monotonicity constraints, and is therefore optimal. This

completes the proof of Theorem EC.1. □

2. Proofs with disutility and higher cost for sharing (EC.2.2)

Note, first, that Assumption 2 provides a necessary condition to provide shared services; otherwise,

each agent receives an individual service with no delay if their type exceeds θc, or leaves the

platform unserved otherwise. To see this, let A1 and A2 be the discounted virtual values of Agent 1

and Agent 2, respectively, at any point in time. A shared service contributes γ(A1+A2)− (1+α)c

to the platform’s objective, whereas two separate services contribute A1 +A2 − 2c; if γ ≤ 1+α
2
, we

always have A1+A2−2c > γ(A1+A2)− (1+α)c. Therefore, if Assumption 2 is violated, no shared

services are provided and each agent receives an immediate individual service if and only if their

type exceeds θc.

2.1. Proof of Theorem EC.2

Let us assume that θ1 ≥ θc (we treat the other case similarly at the end of the proof). In that case,

the virtual type of Agent 1 exceeds the cost of an individual service.

Let us first consider the service at time τ when both agents are present on the platform (i.e.,

τ ≤ T1(θ1)). If e
−δτφ(θ1)≥ c, Agent 1 will receive a service at time τ , leading to three possibilities:

(i) an individual service to Agent 1, with profit contribution e−δτφ(θ1)−c; (ii) a shared service, with

profit contribution γ (e−δτφ(θ1)+φ(θ2))− (1 + α)c; and (iii) separate individual services to both

agents, with profit contribution e−δτφ(θ1) + φ(θ2)− 2c. Note that (i) does not depend on θ2, (ii)

increases with θ2 at rate γ < 1, and (iii) increases with θ2 at rate 1. Expressions (i) and (ii) coincide

when φ(θ2) =
(1−γ)e−δτφ(θ1)

γ
+ αc

γ
. Expressions (ii) and (iii) coincide when φ(θ2) =

(1−α)c

1−γ
−e−δτφ(θ1).

Therefore, service provision is given as follows as long as (1−γ)e−δτφ(θ1)

γ
+ αc

γ
< (1−α)c

1−γ
− e−δτφ(θ1):

(i) individual service to Agent 1 if φ(θ2)<
(1−γ)e−δτφ(θ1)

γ
+ αc

γ

(ii) shared service if (1−γ)e−δτφ(θ1)

γ
+ αc

γ
≤φ(θ2)<

(1−α)c

1−γ
− e−δτφ(θ1)

(iii) separate individual services otherwise.

To complete this proof, we need to show that (1−γ)e−δτφ(θ1)

γ
+ αc

γ
< (1−α)c

1−γ
−e−δτφ(θ1) when Agent

1 remains on the platform at time τ . Assuming otherwise, we would have e−δτφ(θ1)≥ (γ−α)c

1−γ
, which

implies that φ(θ1) >
(γ−α)c

1−γ
> (1−α)c

2(1−γ)
> 0 (Assumption 2). Then, providing an individual service

to Agent 1 at time 0 dominates leaving them unserved. Next, we show that a shared service is
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dominated even if Agent 2 arrives instantaneously, at time 0. Indeed, there are three possibilities:

(i) an individual service to Agent 1, with profit contribution φ(θ1)− c; (ii) a shared service, with

profit contribution γ (φ(θ1)+φ(θ2))−(1+α)c; and (iii) separate individual services to both agents,

with profit contribution φ(θ1)+φ(θ2)− 2c. Expression (i) dominates Expression (ii) when φ(θ2)<
1−γ
γ
φ(θ1) +

αc
γ
; and Expression (iii) dominates Expression (ii) when φ(θ2) >

(1−α)c

1−γ
− φ(θ1). But

since φ(θ1)>
(γ−α)c

1−γ
, we have 1−γ

γ
φ(θ1) +

αc
γ
> (1−α)c

1−γ
−φ(θ1). Therefore, a shared service at τ = 0

is dominated by an allocation policy in which agent 1 is served individually, and so is a shared

service at τ > 0 as a result. This proves that (1−γ)e−δτφ(θ1)

γ
+ αc

γ
< (1−α)c

1−γ
−e−δτφ(θ1) whenever Agent

1 remains on the platform at time τ > 0, and completes the proof of the above allocation rule.

We proceed similarly when e−δτφ(θ1) < c. There are three possibilities: (i) no service, with

profit contribution 0; (ii) a shared service, with profit contribution γ (e−δτφ(θ1)+φ(θ2))− (1+α)c;

(iii) an individual service to only agent 2, with profit contribution φ(θ2)− c. Expressions (i) and

(ii) coincide when φ(θ2) =
1+α
γ

c− e−δτφ(θ1); and Expressions (ii) and (iii) coincide when φ(θ2) =
γ

1−γ
e−δτφ(θ1)− α

1−γ
c. When e−δτφ(θ1)≥ 1+α−γ

γ
c, we have 1+α

γ
c− e−δτφ(θ1)≤ γ

1−γ
e−δτφ(θ1)− α

1−γ
c

holds; otherwise, Expression (ii) is never optimal so Agents 1 and 2 are treated independently.

Therefore, service provision is given as follows

If e−δτφ(θ1)≥
1+α− γ

γ
c:


(i) no service if φ(θ2)<

1+α
γ

c− e−δτφ(θ1)

(ii) shared service if 1+α
γ

c− e−δτφ(θ1)≤φ(θ2)<
γ

1−γ
e−δτφ(θ1)− α

1−γ
c

(iii) individual service to Agent 2 otherwise.

If e−δτφ(θ1)<
1+α− γ

γ
c:

{
(i) no service if φ(θ2)< c

(iii) individual service to Agent 2 otherwise.

We now characterize service provision to Agent 1 at time 0, by deriving T1(θ1). We already

know that T1(θ1) = 0 when φ(θ1) ≥ γ−α
1−γ

c. Let us now assume that φ(θ1) <
γ−α
1−γ

c. We denote by

Π̃τ (θ1| T1(θ1)) the platform’s expected discounted profit from time t= τ onward. When τ ≤ T1(θ1),

both agents are present on platform at τ , and we denote the corresponding value of Π̃τ (θ1| T1(θ1)) by

Π̃τ
12(θ1). When τ > T1(θ1), only Agent 2 is present on platform at τ , and we denote the corresponding

value of Π̃τ (θ1| T1(θ1)) by Π̃τ
2(θ1). For a given report θ1, let π(θ1) denote the platform’s profit:

π(θ1) = e−(r+λ)T1(θ1)
(
e−δT1(θ1)φ(θ1)− c

)
+

∫ T1(θ1)

0

λe−(r+λ)τ Π̃τ
12(θ1)+

∫ ∞

T1(θ1)

λe−(r+λ)τ Π̃τ
2(θ1).

Claim 5. For a given θ1 ∈ [θc, θ], let T θ1 =− 1
δ
log c

φ(θ1)
. If T1(θ1) is finite, then T1(θ1)<T θ1.

Claim 6. T1(θ1) = 0, or T1(θ1) =∞, for each θ1 ∈ [θ, θ].

These claims are proved as Claims 1 and 2, except that the profit equation associated with shared

services at time τ needs to be modified to account for the added costs and disutility. Specifically,

we replace Equation EC.3 by

Π̃τ
12(θ1)

∣∣∣
τ=T1

=

∫ φ−1(xγ,α)

θ

[
e−δT1φ(θ1)− c

]
f(θ2)dθ2 (6)
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+

∫ φ−1(x̄γ,α)

φ−1(xγ,α)

[
γ
(
e−δT1φ(θ1)+φ(θ2)

)
− (1+α)c

]
f(θ2)dθ2

+

∫ θ̄

φ−1(x̄γ,α)

[
e−δT1φ(θ1)+φ(θ2)− 2c

]
f(θ2)dθ2.

Indeed, when T1 < T θ1 , we have e−δT1φ(θ1)− c > 0 and e−δT1φ(θ1) +φ(θ2)− c > φ(θ2)− c. This

leads to: (i) an individual service to Agent 1 if φ(θ2) < xγ,α = (1−γ)e−δT1φ(θ1)

γ
+ αc

γ
; (ii) a shared

service if φ(θ2)> x̄γ,α = (1−α)c

1−γ
− e−δT1φ(θ1)>xγ,α; and (iii) separate individual services otherwise.

Then by denoting Φ = e−δT1φ(θ1), and by using the fact that ∂Φ
∂T1

= −δΦ, we get the second

derivative of the π(θ1) with respect to T1 as:

∂2π(θ1)

∂(T1)2
= δ(r+λ+ δ)Φ+λ

[
(Φ− c)

∂φ−1(xγ,α)

∂T1

−
∫ φ−1(xγ,α)

θ

δΦf(θ2)dθ2

]

+λ

[
(γ(Φ+ x̄γ,α)− (1+α)c)

∂φ−1(x̄γ,α)

∂T1

−
(
γ(Φ+xγ,α)− (1+α)c

) ∂φ−1(xγ,α)

∂T1

−
∫ φ−1(x̄γ,α)

φ−1(xγ,α)

γδΦf(θ2)dθ2

]

+λ

[
− (Φ+ x̄γ,α)− 2c)

∂φ−1(x̄γ,α)

∂T1

−
∫ θ̄

φ−1(x̄γ,α)

δΦf(θ2)dθ2

]
After some algebra, it yields:

∂2π(θ1)

∂(T1)2
= δ(r+λ+ δ)Φ−λ

∫ θ̄

θ

δΦf(θ2)dθ2 +λ

∫ φ−1(x̄γ,α)

φ−1(xγ,α)

(1− γ)δΦf(θ2)dθ2 > 0.

This establishes the convexity of π(θ1) with respect to T1 and proves Claim 6. □

Proof of Theorem EC.2. We now know that T1(θ1) = 0, or T1(θ1) =∞, for each θ1 ∈ [θ, θ]. The

next step is to determine for which values of θ1 it is optimal to set T1(θ) = 0 as opposed to

T1(θ) =∞. By proceeding as in the proof of Theorem 1, we find that there exists a cutoff θγ,α such

that:

T1(θ1) =

{
0 if θ1 ≥ θγ,α,

∞ otherwise.

This completes the proof int he case where θ1 > θc. When θ1 ≤ θc, the virtual value of Agent 1 is

positive but too small to warrant an individual service. Therefore, Agent 1 is held in queue until

Agent 2 arrives, i.e., T1(θ1) =∞. The allocation rule at time τ is identical to the one above. This

completes the proof of the theorem. □

3. Details on the benchmarks (Section 4.1)

We provide details on the three posted-prices benchmarks, and compute the six performance metrics

considered in the paper. These derivations complement those in EC.1.3 for the optimal mechanism,

enabling the performance assessment performed in Section 4.1 of the main paper.
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3.1. Benchmark 1: individual services.

The platform provides only individual services at a constant price p. Each agent i∈ {1,2} purchases

the service if and only if θi ≥ p. The optimal price is p= θc. The performance metrics are as follows:

– Probability of service for Agent 1, and for Agent 2: PrInd1 = PrInd2 = 1− θc.

– Expected utility of Agent 1 at time 0 and Agent 2 at time τ :

U Ind
1 =U Ind

2 =

∫ 1

θc

(θ− θc)dθ=
(1− θc)

2

2

– Expected profit of the platform at time 0: ΠInd = (1− θc)(θc − c)
(
1+ λ

r+λ

)
.

– Expected surplus at time 0, including the utility of both agents and the platform’s profit:

TSInd =

(
1+

λ

r+λ

)
(1− θc)(1+ θc − 2c)

2

3.2. Benchmark 2: shared services.

The platform charges a fixed price p per shared service to each agent. A service is provided if

and only if both agents are available and willing to pay p. We assume that λ > δ to avoid case

distinctions, but all arguments can be easily extended otherwise.

For a given price p, Agent 1 is willing to purchase the service at time τ if and only if e−δτθ1 ≥

p. Under the uniform distribution, this occurs with probability
(
1− p

e−δτ

)
if τ ≤ − log(p)

δ
, and 0

otherwise. Then, Agent 2 is willing to purchase the service at time τ if and only if θ2 ≥ p, which

occurs with probability (1− p). The discounted expected profit at time 0 is given by:

πS(p) =(2p− c)

∫ − log(p)
δ

0

λe−(r+λ)τ
(
1− p

e−δτ

)
(1− p)dτ

=(2p− c)(1− p)

[
λ(1− p(r+λ)/δ)

r+λ
− λp(1− p(r+λ−δ)/δ)

r+λ− δ

]
Let p⋆ = argminπS(p) be the profit-maximizing price. We compute the performance metrics:

– Probability of service to Agent 1 and 2:

PrSh1 = PrSh2 =

∫ − log(p⋆)
δ

0

λe−λτ
(
1− p⋆

e−δτ

)
(1− p⋆)dτ = (1− p⋆)

(1− pλ/δ⋆

)
−

λp⋆

(
1− p

(λ−δ)/δ
⋆

)
λ− δ


– Ex-post expected utility of Agent 1 of θ1 at time 0, with T

S

θ1
=max

{
0,

− log( p⋆θ1
)

δ

}
being the

latest time when Agent 1 is willing to purchase a service at price p⋆. The term (1−p⋆) denotes

the probability that Agent 2 is willing to purchase the shared service at time τ ; the second

term captures Agent 1’s expected utility conditional on Agent 2’s willingness to purchase.

uSh
1 (θ1) = (1− p⋆)

∫ T
S
θ1

0

λe−(r+λ)τ (e−δτθ1 − p⋆)dτ
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= (1− p⋆)

[
λ(1− e−(r+δ+λ)T

S
θ1 )θ1

r+ δ+λ
− λ(1− e−(r+λ)T

S
θ1 )p⋆

r+λ

]

We then compute the ex-ante expected utility of Agent 1 as USh
1 =

∫ θ

θ
uSh
1 (θ1)dθ1

– Expected utility of Agent 2 at time τ .

USh
2 =

∫ − log(p⋆)
δ

0

λe−λτ
(
1− p⋆

e−δτ

)∫ 1

p⋆

(θ2 − p⋆)dθ2dτ =
(1− p⋆)

2

2

(1− pλ/δ⋆

)
−

λp⋆

(
1− p

(λ−δ)/δ
⋆

)
λ− δ


– Expected discounted profit at time 0:

ΠSh = (2p⋆ − c)(1− p⋆)

[
λ(1− p

(r+λ)/δ
⋆ )

r+λ
− λp⋆(1− p

(r+λ−δ)/δ
⋆ )

r+λ− δ

]
– Expected discounted total surplus at time 0:

TSSh =USh
1 +ΠSh +

∫ − log(p⋆)
δ

0

λe−(r+λ)τ
(
1− p⋆

e−δτ

)∫ 1

p⋆

(θ2 − p⋆)dθ2dτ

=USh
1 +ΠSh +

(1− p⋆)
2

2

λ
(
1− p

(λ+r)/δ
⋆

)
λ+ r

−
λp⋆

(
1− p

(λ+r−δ)/δ
⋆

)
λ+ r− δ


3.3. Benchmark 3: hybrid posted prices for individual and shared services.

The platform charges a price pI for individual services and a price pS for shared services. Agents

are free to choose their preferred option, but the shared service is only available if both agents are

simultaneously available on the platform and both opt for the shared service. Proposition 1 of the

main paper identifies a price χ(pI , pS) such that Agent 1 purchases an individual service at t= 0

if θ1 ≥ χ(pI , pS). When θ1 <χ(pI , pS), Agents 1 and 2 purchase a shared service at time τ if both

their willingness to pay at that time exceeds pS; Agent 1 purchases an individual service if their

willingness to pay at that time exceeds pI and but Agent 2’s is less than pS; and Agent 2 purchases

an individual service if their willingness to pay at that time exceeds pI and but Agent 1’s is less

than pS. We prove that proposition below.

Given pair (pI , pS), let T
I

θ1
(resp., T

S

θ1
) denote the latest time at which an individual (resp.,

shared) service yields a positive utility for an agent of type θ1. Specifically:

T
I

θ1
=max

{
0,

log θ1
pI

δ

}
, T

S

θ1
=max

{
0,

log θ1
pS

δ

}
.

We can then compute the relevant performance metrics:

– Probability of service for Agent 1, as a function of θ1. If the agent type exceeds the threshold

for individual services, χ(pI , pS), then they are served with probability 1. Otherwise, they

are served with probability 1 if Agent 2 arrives before T
I

θ1
, which occurs with probability
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1− e−λT
I
θ1 ; and they are served with probability 1− pS if Agent 2 arrives between T

I

θ1
and

T
S

θ1
, which occurs with probability e−λT

I
θ1 − e−λT

S
θ1 .

prHyb
1 (θ1) =

{
1 if θ1 ≥ χ(pI , pS)

1− e−λT
I
θ1 +

(
e−λT

I
θ1 − e−λT

S
θ1

)
(1− pS) if θ1 <χ(pI , pS)

We derive the expected service probability of Agent 1 as PrHyb
1 =

∫ θ

θ
prHyb

1 (θ1)dθ1.

– Expected probability of service for Agent 2, as a function of θ1. If Agent 1 received an individual

service, then Agent 2 is served if and only if their valuation exceeds pI . Otherwise, if Agent

2 arrives before T
I

θ1
, they are served if and only if their valuation exceeds pS; and if Agent 2

arrives after T
S

θ1
, they are served if and only if their valuation exceeds pI .

prHyb
2 (θ1) =

{
1− pI if θ1 ≥ χ(pI , pS)(
1− e−λT

S
θ1

)
(1− pS)+ e−λT

S
θ1 (1− pI) if θ1 <χ(pI , pS)

We derive the expected service probability of Agent 2 as PrHyb
2 =

∫ θ

θ
prHyb

2 (θ1)dθ1.

– Expected utility of Agent 1 at time 0 as a function of θ1: an agent of type θ1 derives a utility

of θ1 − pI if Agent 1 is served immediately at price pI ; otherwise, the ex-post utility is equal

to:∫ T
I
θ1

0

λe−(r+λ)τ
[
(1− pS)(e

−δτθ1 − pS)+ pS(e
−δτθ1 − pI)

]
dτ+

∫ T
S
θ1

T
I
θ1

λe−(r+λ)τ (1−pS)(e
−δτθ1−pI)dτ

Therefore, the ex-post utility of Agent 1 of type θ1 is:

uHyb
1 (θ1) =



θ1 − pI if θ1 ≥ χ(pI , pS)

λ(1−e
−(r+δ+λ)T

I
θ1 )

r+δ+λ
θ1 − λ(1−e

−(r+λ)T
I
θ1 )

r+λ
((1− pS)pS + pspI)

+(1− pS)

[
λ(e

−(r+δ+λ)T
I
θ1−e

−(r+δ+λ)T
S
θ1 )

r+δ+λ
θ1 − λ(e

−(r+λ)T
I
θ1−e

−(r+λ)T
S
θ1 )

r+λ
pS

] if θ1 <χ(pI , pS)

We then compute the ex-ante expected utility of Agent 1 as UHyb
1 =

∫ θ

θ
uHyb
1 (θ1)dθ1

– Expected utility for Agent 2 at time τ , as a function of θ1. These calculations follow a similar

logic as those of the probability of service, by replacing the probabilities 1− p by the utilities

(1− p)2/2 for a price of p∈ {pS, pI}.

uHyb
2 (θ1) =


(1−pI )

2

2
if θ1 ≥ χ(pI , pS)

(1− e−λT
S
θ1 ) (1−pS)2

2
+ e−λT

S
θ1

(1−pI )
2

2
if θ1 <χ(pI , pS)

We then compute the ex-ante expected utility of Agent 2 as UHyb
2 =

∫ θ

θ
uHyb
2 (θ1)dθ1
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– Expected profit, calculated at time 0 as a function of the type of Agent 1: If Agent 1 of type

θ1 receives an immediate service, then the platform derives an immediate profit of pI − c and

a future expected profit of λ
r+λ

(1− pI)(pI − c). Otherwise, the platform derives an expected

discounted profit of:

∫ T
I
θ1

0

λe−(r+λ)τ [(1− pS)(2pS − c)+ pS(pI − c)]dτ +

∫ T
S
θ1

T
I
θ1

λe−(r+λ)τ (1− pS)(2pS − c)dτ

+

∫ ∞

T
S
θ1

(1− pI)(pI − c)dτ

Therefore, the ex-post profit of the platform is equal to:

πHyb(θ1) =



(pI − c)
(
1+ λ

r+λ
(1− pI)

)
if θ1 ≥ χ(pI , pS)

λ(1−e
−(r+λ)T

I
θ1 )

r+λ
[(1− pS)(2pS − c)+ pS(pI − c)]

+
λ

(
e
−(r+λ)T

I
θ1−e

−(r+λ)T
S
θ1

)
r+λ

((1− pS)(2pS − c))

+λ(e
−(r+λ)T

S
θ1

r+λ
((1− pI)(pI − c))

if θ1 <χ(pI , pS)

We then compute the ex-ante expected profit as ΠHyb =
∫ θ

θ
πHyb(θ1)dθ1

– Expected discounted total surplus at time 0 as a function of θ1:

tsHyb(θ1) =


(pI − c)

(
1+ λ

r+λ
(1− pI)

)
+(θ1 − pI)+

λ
r+λ

(1−pI )
2

2
if θ1 ≥ χ(pI , pS)

uHyb
1 (θ1)+πHyb(θ1)+

λ
r+λ

(
(1− e(r+λ)T

S
θ1 ) (1−pS)2

2
+ e−(r+λ)T

S
θ1

(1−pI )
2

2

)
if θ1 <χ(pI , pS)

We then calculate the expected discounted total surplus at time 0 as TSHyb =
∫ θ

θ
tsHyb(θ1)dθ1.

3.4. Proof of Proposition 1

For any prices pS and pI such that pI ≥ pS, we first identify properties of the equilibrium outcome.

We then leverage these properties to formulate the platform’s profit-maximization problem.

Lemma 2. If Agent 1 does not purchase an individual service at time t= 0, then they does not

purchase any service until Agent 2 arrives at time t= τ .

Proof of Lemma 2 Suppose by contradiction that it is optimal for Agent 1 of type θ1 to purchase

an individual service before Agent 2 arrives at some time t > 0. From their revealed preferences,

we know that purchasing an individual service at time t dominates an alternative strategy that

consists of waiting an additional infinitesimally small amount of time dt, and, then, purchasing a

service at time t+ dt. This service will be shared (hence, cheaper) in case Agent 2 arrives (which
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occurs with probability 1 − e−λdt) and θ2 ≥ pS (which occurs with probability 1 − F (pS)), and

individual otherwise. This translates into the following inequality:

e−δtθ1 − pI ≥e−rdte−λdt(e−δ(t+dt)θ1 − pI)

+ e−rdt(1− e−λdt)
[
(1−F (pS))(e

−δ(t+dt)θ1 − pS)+F (pS)(e
−δ(t+dt)θ1 − pI)

]
We obtain:

e−δtθ1 − pI ≥ e−rdte−δ(t+dt)θ1 − e−rdt
(
e−λdt +(1− e−λdt)(1−F (pS))

)
pI − e−rdt(1− e−λdt)F (pS)pS

This yields:

e−δtθ1(1− e−(r+δ)dt)≥
(
1− e−(r+λ)dt − e−(r+λ)dt)(1−F (pS))

)
pI − e−(r+λ)dt)F (pS)pS

But then, by multiplying the left-hand side by e+δdt (which is larger than 1), we obtain:

e−δ(t−dt)θ1(1− e−(r+δ)dt)>
(
1− e−(r+λ)dt − (1− e−(r+λ)dt)(1−F (pS))

)
pI − (1− e−(r+λ)dt)F (pS)pS.

Therefore, purchasing an individual service (before Agent 2 arrives) at t−dt is strictly better than

purchasing an individual service (before Agent 2 arrives) at t for Agent 1. This contradicts with

the optimality of t, and completes our proof. □

From Lemma 2, we know that Agent 1 either immediately purchases an individual service at

t= 0 or waits until Agent 2 arrives. At time t= τ , they has three options:

• When e−δτθ1 ≥ pI , Agent 1 purchases a shared service with Agent 2 if θ2 ≥ pS. Otherwise, if

θ2 < pS, they purchases an individual service.

• When pS ≤ e−δτθ1 < pI , Agent 1 receives a shared service if θ2 ≥ pS. Otherwise, if θ2 < pS,

they leaves the platform without being served.

• When e−δτθ1 < pS, Agent 1 leaves the platform without being served.

The following lemma shows that Agent 1 purchases an immediate service at t= 0 if and only if

their type θ1 exceeds a threshold value, denoted by χ(pI , pS).

Lemma 3. For any given pair of prices pS and pI , there exists a value χ(pI , pS)> pI such that

Agent 1 purchases an immediate service at t= 0 if and only if θ1 ≥ χ(pI , pS)

Proof of Lemma 3 If Agent 1 of type θ1 purchases an immediate service at t= 0 at price pI ,

their utility, denoted by Uimm(θ1), is given by:

Uimm(θ1) = θ1 − pI
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It is clear that Agent 1 never purchases an individual service when θ1 < pI . We therefore assume

that θ1 ≥ pI . Under this assumption, the times T I
θ1

and TP
θ1

given in the proposition are equal to:

T I
θ1
=

1

δ
log

(
θ1
pI

)
and TP

θ1
=

1

δ
log

(
θ1
pS

)
.

We now express the expected discounted utility of Agent 1 of type θ1 resulting from waiting

until time t= τ (when Agent 2 arrives), which we denote by Uwait(θ1). Recall that:

• If τ ≤ T I
θ1
, then Agent 1 purchases either a shared service or individual service.

• If T I
θ1
< τ ≤ TP

θ1
, then Agent 1 purchases only a shared service.

• If τ > T P
θ1
, then Agent 1 does not purchase any service.

Thus, Uwait(θ1) satisfies:

Uwait(θ1) =

∫ T I
θ1

0

λe−(r+λ)τ
[
(1−F (pS))(e

−δτθ1 − pS)+F (pS)(e
−δτθ1 − pI)

]
dτ

+

∫ TP
θ1

T I
θ1

λe−(r+λ)τ (1−F (pS))
(
e−δτθ1 − pS

)
dτ

=
[
1− e−(r+δ+λ)T I

θ1F (pS)− e−(r+δ+λ)TP
θ1 (1−F (pS))

] λ

r+ δ+λ
θ1

− λ

r+λ

[
1− e−(r+λ)TP

θ1

]
(1−F (pS))pS −

λ

r+λ

[
1− e−(r+λ)T I

θ1

]
F (pS)pI

Plugging the expressions for T I
θ1
, and TP

θ1
, we obtain:

Uwait(θ1) =

(
1−F (pS)

(
pI
θ1

) r+δ+λ
δ

− (1−F (pS))

(
pS
θ1

) r+δ+λ
δ

)
λ

r+ δ+λ
θ1

− λ

r+λ

(
1−

(
pS
θ1

) r+λ
δ

)
(1−F (pS))pS −

λ

r+λ

(
1−

(
pI
θ1

) r+λ
δ

)
F (pS)pI

By defining ∆(θ1) =Uimm(θ1)−Uwait(θ1), we have:

∆(θ1) =
(r+ δ)θ1
r+ δ+λ

− pI +
λ

r+ δ+λ
θ
− r+λ

δ
1

[
F (pS)p

r+δ+λ
δ

I +(1−F (pS))p
r+δ+λ

δ
S

]
− λ

r+λ

[
θ
− r+λ

δ
1

(
F (pS)p

r+δ+λ
δ

I +(1−F (pS))p
r+δ+λ

δ
S

)
− (1−F (pS))pS −F (pS)pI

]
=

(r+ δ)θ1
r+ δ+λ

− λδ

(r+ δ+λ)(r+λ)
θ
− r+λ

δ
1

[
F (pS)p

r+δ+λ
δ

I +(1−F (pS))p
r+δ+λ

δ
S

]
− pI +

λ

r+λ
[(1−F (pS))pS +F (pS)pI ] ,

which is increasing in θ1. Thus, for given prices pI and pS, there exists a cutoff χ(pI , pS) such that

∆(θ1) =

> 0 if θ1 >χ(pI , pS)
= 0 if θ1 = χ(pI , pS)
< 0 if θ1 <χ(pI , pS)

This completes the proof. □
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Proof of Proposition 1. Based on the structure of the equilibrium, we obtain the expected profit

of the platform for given values of pI and pS:

Π(pI , pS) = [1−F (χ(pI , pS))]

[
(pI − c)+

λ

r+λ
(1−F (pI))(pI − c)

]
+

∫ χ(pI ,pS)

θ

∫ T I
θ1

0

λe−(r+λ)τ [(1−F (pS))(2pS − c)+F (pS)(pI − c)]dτf(θ1)dθ1

+

∫ χ(pI ,pS)

θ

∫ TP
θ1

T I
θ1

λe−(r+λ)τ [(1−F (pS))(2pS − c)]dτf(θ1)dθ1

+

∫ χ(pI ,pS)

θ

∫ ∞

TP
θ1

λe−(r+λ)τ [(1−F (pI))(pI − c)]dτf(θ1)dθ1.

Then the platform’s problem is defined as:

max
pI ,pS

Π(pI , pS)

This completes the proof of Proposition 1. □


