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Accelerated Residual Descent Method (ARDM)

Accelerated Residual Descent Method
(ARDM)
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Accelerated methods for exascale simulation

Numerical simulation in fluid dynamics, solid mechanics,
electromagnetism, etc. leads to large nonlinear systems of equations

f (u) = 0 with u ∈ R106−10

(1)

The matrix ∂f /∂u exceeds the memory available in large
supercomputers, therefore matrix-free methods are needed and used

State-of-the-art massively-parallel matrix-free method for (1) is
(preconditioned) forward Euler, which is analogous to gradient
descent in the optimization setting

We extend the ideas of accelerated methods for optimization to
devise accelerated methods for nonlinear systems like (1)
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Difference between optimization and simulation

Matrix ∂f /∂u Eigenvalues of ∂f /∂u
Optimization Symmetric Real

Simulation Non-symmetric Complex

We use linear stability theory to devise accelerated methods that are
better suited to simulation (i.e., to systems with complex eigenvalues)

Figure: Stability regions of Nesterov’s method and our accelerated
residual method. βk denotes the acceleration parameter. η := λαk .
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Accelerated Residual Descent Method

Accelerated Nesterov’s method

vk = uk + βk(uk − uk−1), (2a)

uk+1 = vk − αk f (vk). (2b)

Our method: Accelerated Residual Descent Method (ARDM)

vk = uk + βk(uk − uk−1)−αk(1 + βk)f (uk), (3a)

uk+1 = vk − αk f (vk). (3b)

Extra-term in red makes the method better suited (more robust) for
simulation
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Numerical results: Burgers equations
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Figure: Left: No preconditioner Right: Block-Jacobi preconditioner

Accelerated methods (Nesterov, ARDM) converge much faster than
non-accelerated method (forward Euler)

ARDM is more robust than Nesterov’s method
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Accelerated Algorithms for Compressed Simulation via
Deep Learning

Accelerated Algorithms for

Compressed Simulation via Deep Learning
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Compressed Simulation

The numerical discretization of many problems of interest produces
dynamical systesm of the form

xt = f (xt−1), xt ∈ Rn, t ∈ [1, . . . ,T ] (4)

f () : nonlinear map

Koopman Theory
Nonlinear discrete-time system can be mapped to a linear
discrete-time system of the form

g(xt) = Kg(xt−1)

g() : observable function of the state vector x
K : infinite-dimensional linear operator
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The Koopman Invariant Subpace

If there exists a finite number of observable functions {g1, . . . , gm}
that span G such that

Kg ∈ G, for any g ∈ G

then, G is an invariant subpsace and K becomes finite-dimensional
In this case, instead of solving (4) we can solve the linear problem

yt = Kyt−1, yt = g(xt) (5)

where g = [g1, . . . , gm]T and K = YX ∗ with
X = [g(x0), . . . , g(xT−1)], Y = [g(x1), . . . , g(xT )],
and recover

xt = g−1(yt)
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Dimensionality Reduction

Koopman theory allows for model reduction of nonlinear
system (4) of dimension n to linear system (5) of dimension
m.

When m� n we can have dimensionality reduction by several
orders of magnitude.

Challenges:

- The construction of K requires the computation of
{x0, . . . , xT}, i.e., we need to perform the full simulation (4)

- The second challenge is to construct/recover the vector-valued
observable g and its inverse g−1.
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Learning Koopman Invariant Subspaces

Learn (K , g , g−1) from data {x0, . . . , xp} with p � T

Training sets X0 = [x0, . . . , xp−1] and X1 = [x1, . . . , xp]

Encoder Neural Net generates X0 = [x0, . . . , xp−1] and
X1 = [x1, . . . , xp]

Advance simulation ŷt = (Ŷ X̂ ∗) ŷt−1

Decoder Neural Net applies mapping g−1 to obtain
{x̂0, . . . , x̂p}
Neural Nets are trained by solving

min
g

L(g ; (x0, . . . , xp)) := ‖X0 − X̂0(g)‖2
F + ‖X1 − X̂1(g)‖2

F

where X̂0 = [x̂0, . . . , x̂p−1] and X̂1 = [x̂1, . . . , x̂p]
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Compressed Simulation

Plan on applying compressed simulation ideas to problems of
practical interest.

High-fidelity simulations of Kelvin-Helmholtz instability (left),
Orszag-Tang MHD flow (center), and turbine cascade flow (right).
These simulations are performed using a high-order finite element
code (DIGASO) developed by the PIs.
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Generalized Stochastic Frank-Wolfe (GSFW) for Loss
Minimization

Generalized Stochastic Frank-Wolfe (GSFW)

for Loss Minimization
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Problem of Interest

The problem of interest is the following general loss minimization
problem:

P: L∗n = minβ Ln(β) := 1
n

∑n
j=1 lj(x

T
j β)

s.t. β ∈ Q

lj(·) is a univariate loss function that is strictly convex, differentiable, and
γ-smooth:

|l̇j(a)− l̇j(b)| ≤ γ|a− b| for all a, b ∈ R

Q ⊂ Rp is a closed and bounded convex set

Define the separable loss function Ln(s) := 1
n

∑n
j=1 lj(sj)

Denote X := [xT1 ; xT2 ; . . . ; xTn ] . Then s := Xβ and Ln(s) = Ln(Xβ)
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Examples in Statistical and Machine Learning

LASSO
minβ

1
2n

∑n
j=1(yj − xT

j β)2

s.t. ‖β‖1 ≤ δ ,
where lj(·) = 1

2
(yj − ·)2 and Q = {β : ‖β‖1 ≤ δ}

Sparse Logistic Regression

minβ
1
n

∑n
j=1 ln(1 + exp(−yjxT

j β))

s.t. ‖β‖1 ≤ δ ,

where lj(·) = ln(1 + exp(−yj ·)) and Q = {β : ‖β‖1 ≤ δ}
Matrix Completion

minβ∈Rn×p
1

2|Ω|
∑

(i,j)∈Ω(Mi,j − βi,j)2

s.t. ‖β‖∗ ≤ δ ,

where l(i,j)(·) = 1
2
(· −Mi,j)

2 and Q = {β : ‖β‖∗ ≤ δ}
others . . .
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Frank-Wolfe method

P: L∗n = minβ Ln(β) := 1
n

∑n
j=1 lj(x

T
j β)

s.t. β ∈ Q

Each iteration of Frank-Wolfe involves two main computations:

compute ∇Ln(βk)

and

solve: β̃k ← arg minβ∈Q{∇Ln(βk)Tβ}

The Frank-Wolfe method is an attractive first-order method to solve P:

O(1/ε) iteration bound for ε-optimal solution

method produces “structured iterates”: βk is at most k-sparse (or
rank-k) after k iterations
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Stochastic Frank-Wolfe method

P: L∗n = minβ Ln(β) := 1
n

∑n
j=1 lj(x

T
j β)

s.t. β ∈ Q

gradient is ∇Ln(βk) = 1
n

∑n
j=1 l̇j(x

T
j β

k)xj

when n� 0 it is too expensive to update xTj β
k for all j = 1, . . . , n

at iteration k

Choose j ∈ U [1, . . . , n]

g̃k = l̇j(x
T
j β

k)xj

g̃k is an unbiased randomized estimate of ∇Ln(βk)

using g̃k instead of ∇Ln(βk) leads to Stochastic Frank-Wolfe
methods
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Comparison of Stochastic Frank-Wolfe Methods

To achieve an ε-optimal solution:

Number of Number of Number of
Algorithm Exact Stochastic Linear Optimization

and Gradient Gradient Oracle
Reference Calls Calls Calls

FW, Frank and Wolfe O( 1
ε

) 0 O( 1
ε

)
SFW, Hazan and Luo 0 O( 1

ε3 ) O( 1
ε

)
Online-FW, Hazan and Kale 0 O( 1

ε4 ) O( 1
ε4 )

SCGS, Lan and Zhou 0 O( 1
ε2 ) O( 1

ε
)

SVRFW, Hazan and Luo O(ln 1
ε

) O( 1
ε2 ) O( 1

ε
)

STORC, Hazan and Luo O(ln 1
ε

) O( 1
ε1.5 ) O( 1

ε
)

SCGM, Mokhtari et al. 0 O( 1
ε3 ) O( 1

ε3 )

GSFW, this work 1 O( 1
ε

) O( 1
ε

)

GSFW uses a biased estimate ǧ k of ∇Ln(βk)
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Convergence Guarantee of GSFW

Define M := maxβ∈Q maxj=1,...,n{|xTj β|}

Theorem: Convergence Guarantee of GSFW

For the GSFW algorithm it holds for all k ≥ 0 that

E
[
Ln(β̄k)− L∗n

]
≤ 8nγM2

(4n + k)
+

2n(2n − 1)γM2

(4n + k)(k + 1)

where

β̄k = 2
(4n+k)(k+1)

k∑
i=0

(2n + i)β̃i .
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Some Thoughts on Directions for the Program

Some Thoughts on

Directions for the Program
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Some Thoughts on Directions for the Program

Optimization in the intertwined contexts of:

“big data”

data science

machine learning (including deep learning)

Optimization for simulation problems in engineering design

Machine learning (and deep learning) applied to engineering design
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Thoughts on Directions for the Program, continued

Theory: develop rigorous theoretical analyses of deep neural
networks to shed light on why/when DNNs work and not work

DNNs do not work for all applications, it is thus important to
genuinely understand their scope/limitations

Algorithms: develop new AI/ML algorithms that are more
rigorous/robust than SGD methods

new algorithms do not need to be more efficient than SGD

develop theory and performance bounds for algorithms in
context of AI/ML applications
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Thoughts on Directions for the Program, continued

Applications: DNNs work well for images, textures, and languages.
How about engineering design?

can DNNs be used to optimize engineering design or to
augment optimization in engineering design?

Data pre-processing: convolutional neural nets work well with
images. For engineering applications, traditional convolutional layers
may not work.

develop new types of pre-processing layers in DNNs for
engineering design

Big/small Data: data is often very expensive to collect in
engineering design problems

develop new types of DNNs in this context that are intended
to work well with small data
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Backup for Generalized Stochastic Frank-Wolfe for Loss
Minimization

Backup for

Generalized Stochastic Frank-Wolfe
for Loss Minimization
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Problem of Interest

The problem of interest is the following general loss minimization
problem:

P: P∗ = minβ P(β) := 1
n

∑n
j=1 lj(x

T
j β)

s.t. β ∈ R

lj(·) is a univariate loss function that is strictly convex and γ-smooth:

|l̇j(a)− l̇j(b)| ≤ γ|a− b| for all a, b ∈ R

R is a closed and bounded convex set, and 0 ∈ R

Define the separable loss function L(s) :=
∑n

j=1 lj(sj)

Denote X := [xT1 ; xT2 ; . . . ; xTn ] . Then s := Xβ and L(s) = L(Xβ)
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Examples in Statistical and Machine Learning

LASSO
minβ

1
2n

∑n
j=1(yj − xT

j β)2

s.t. ‖β‖1 ≤ δ ,
where lj(·) = 1

2
(yj − ·)2 and R = {β : ‖β‖1 ≤ δ}

Sparse Logistic Regression

minβ
1
n

∑n
j=1 ln(1 + exp(−yjxT

j β))

s.t. ‖β‖1 ≤ δ ,

where lj(·) = ln(1 + exp(−yj ·)) and R = {β : ‖β‖1 ≤ δ}
Matrix Completion

minβ∈Rn×p
1

2|Ω|
∑

(i,j)∈Ω(Mi,j − βi,j)2

s.t. ‖β‖∗ ≤ δ ,

where l(i,j)(·) = 1
2
(· −Mi,j)

2 and R = {β : ‖β‖∗ ≤ δ}
others . . .
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Frank-Wolfe and Stochastic Frank-Wolfe updates

The Frank-Wolfe method update is:

Frank-Wolfe method update

Compute β̃i ∈ arg minβ∈P
{
∇P(βi )Tβ

}
βi+1 ← (1− αi )β

i + αi β̃
i

In the traditional stochastic setting, we can only compute an (unbiased?)
estimator g̃ of the gradient ∇P(βi ), and the update is

Stochastic Frank-Wolfe method update

Compute β̃i ∈ arg minβ∈Q
{

(g̃ i )Tβ
}

βi+1 ← (1− αi )β
i + αi β̃

i
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Stochastic Frank-Wolfe unbiased estimate of gradient

P: P∗ = minβ P(β) := 1
n

∑n
j=1 lj(x

T
j β)

s.t. β ∈ R

gradient is ∇P(β) = 1
n

∑n
j=1 l̇j(x

T
j β)xj

When n is large it is too expensive to update xTj β for all
j = 1, . . . , n at each iteration

Choose j ∈ U [1, . . . , n]

g̃ = l̇j(x
T
j β)xj

g̃ is an unbiased estimate of the gradient
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Stochastic Frank-Wolfe Methods

Comparison of computational complexity of recent stochastic Frank-Wolfe
methods to achieve an absolute ε-optimal solution

Number of Number of Number of
Algorithm Exact Stochastic Linear Optimization

and Gradient Gradient Oracle
Reference Calls Calls Calls

FW, Frank and Wolfe O( 1
ε

) 0 O( 1
ε

)
SFW, Hazan and Luo 0 O( 1

ε3 ) O( 1
ε

)
Online-FW, Hazan and Kale 0 O( 1

ε4 ) O( 1
ε4 )

SCGS, Lan and Zhou 0 O( 1
ε2 ) O( 1

ε
)

SVRFW, Hazan and Luo O(ln 1
ε

) O( 1
ε2 ) O( 1

ε
)

STORC, Hazan and Luo O(ln 1
ε

) O( 1
ε1.5 ) O( 1

ε
)

SCGM, Mokhtari et al. 0 O( 1
ε3 ) O( 1

ε3 )

GSFW, this work 1 O( 1
ε

) O( 1
ε

)
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“Substitute” Gradient

P: P∗ = minβ P(β) := 1
n

∑n
j=1 lj(x

T
j β)

s.t. β ∈ R

gradient is ∇P(β) = 1
n

∑n
j=1 l̇j(x

T
j β)xj

When n is large it is too expensive to update xTj β for all
j = 1, . . . , n in each iteration

“Substitute” gradient d is computed by d = 1
n

∑n
j=1 l̇j(sj)xj

We will only update one sj in each iteration

d may not be an unbiased estimator of the gradient
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Generalized Stochastic Frank-Wolfe Method with
Substitute Gradient

Generalized Stochastic Frank-Wolfe with Substitute Gradient (GSFW)

Initialize with β̄−1 = 0, s0 = 0, and substitute gradient
d0 = 1

nX
T∇L(s0), with step-size sequences {αi} ∈ (0, 1], {ηi} ∈ (0, 1].

For iterations i = 0, 1, . . . , do:

Solve l.o.o. subproblem: Compute β̃i ∈ arg minβ∈R
{(

d i
)T
β
}

Choose random index: Choose ji ∈ U [1, . . . , n]
Update s value: s i+1

ji
← (1− ηi )s iji + ηi (x

T
ji
β̃i ), and s i+1

j ← s ij for j 6= ji

Update substitute gradient:

d i+1 = 1
nX

T∇L(s i+1) = d i + 1
n

(
l̇ji (s

i+1
ji

)− l̇ji (s
i
ji
)
)
xji

Update primal variable: β̄i ← (1− αi )β̄
i−1 + αi β̃

i .

(Optional Accounting:) w i+1 ← ∇L(s i+1)
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Generalized Stochastic Frank-Wolfe Method with
Substitute Gradient
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Generalized Stochastic Frank-Wolfe Method with
Substitute Gradient
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Generalized Stochastic Frank-Wolfe Method with
Substitute Gradient
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Generalized Stochastic Frank-Wolfe Method with
Substitute Gradient
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Generalized Stochastic Frank-Wolfe Method with
Substitute Gradient

Generalized Stochastic Frank-Wolfe with Substitute Gradient (GSFW)
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Generalized Stochastic Frank-Wolfe Method with
Substitute Gradient

Generalized Stochastic Frank-Wolfe with Substitute Gradient (GSFW)

Initialize with β̄−1 = 0, s0 = 0, and substitute gradient
d0 = 1

nX
T∇L(s0), with step-size sequences {αi} ∈ (0, 1], {ηi} ∈ (0, 1].

For iterations i = 0, 1, . . . , do:

Solve l.o.o. subproblem: Compute β̃i ∈ arg minβ∈R
{(

d i
)T
β
}

Choose random index: Choose ji ∈ U [1, . . . , n]
Update s value: s i+1

ji
← (1− ηi )s iji + ηi (x

T
ji
β̃i ), and s i+1

j ← s ij for j 6= ji

Update substitute gradient:

d i+1 = 1
nX

T∇L(s i+1) = d i + 1
n

(
l̇ji (s

i+1
ji

)− l̇ji (s
i
ji
)
)
xji

Update primal variable: β̄i ← (1− αi )β̄
i−1 + αi β̃

i

(Optional Accounting:) w i+1 ← ∇L(s i+1)
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Convergence Guarantee of GSFW

Define M := maxβ∈R maxj=1,...,n{|xTj β|}

Theorem: Convergence Guarantee of GSFW

Consider GSFW with step-size sequences αi = 2(2n+i)
(i+1)(4n+i) and

ηi = 2n
2n+i+1 for i = 0, 1, . . .. It holds for all k ≥ 0 that

E
[
P(β̄k)− P∗

]
≤ 8nγM2

(4n + k)
+

2n(2n − 1)γM2

(4n + k)(k + 1)
.
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