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How can optimization inform statistics (and machine
learning)?

Paper in preparation (this talk):

Condition Number Analysis of Logistic Regression, and its Implications
for First-Order Solution Methods

A “cousin” paper of ours:

A New Perspective on Boosting in Linear Regression via Subgradient
Optimization and Relatives
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Outline

Optimization primer: two basic first-order methods for convex
optimization

Logistic regression perspectives: statistics “vs.” machine learning

A pair of condition numbers for the logistic regression problem:

when the sample data is non-separable:
a condition number for the degree of non-separability of the
dataset
informing the convergence guarantees of Greedy Coordinate
Descent and Stochastic Gradient Descent (SGD)
guarantees on reaching linear convergence (thanks to Bach)

when the sample data is separable:
a condition number for the degree of separability of the
dataset
informing convergence guarantees to deliver an approximate
maximum margin classifier
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Review of Two Basic First-Order Methods for Convex
Optimization

Two Basic First-Order Methods for Convex Optimization:

Greedy Coordinate Descent method

“go in the best coordinate direction”

Stochastic Gradient Descent (SGD) method

“go in the direction of the negative of the stochastic estimate
of the gradient”
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Convex Optimization

The problem of interest is:

F ∗ := min
x

F (x)

s.t. x ∈ Rp

where F (·) is differentiable and convex:

F (λx + (1 − λ)y) ≤ λF (x) + (1 − λ)F (y) for all x , y , and all λ ∈ [0, 1]

Let ‖x‖ denote the given norm on the variables x ∈ Rp
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Norms and Dual Norms

Let ‖x‖ be the given norm on the variables x ∈ Rp

The dual norm is ‖s‖∗ := maxx{sT x : ‖x‖ ≤ 1}

Some common norms and their dual norms:

Name Norm Definition Dual Norm

`2-norm ‖x‖2 ‖x‖2 =
√∑p

j=1 |xj |2 ‖s‖∗ = ‖s‖2

`1-norm ‖x‖1 ‖x‖1 =
∑p

j=1 |xj | ‖s‖∗ = ‖s‖∞

`∞-norm ‖x‖∞ ‖x‖∞ = max{|x1|, . . . , |xp|} ‖s‖∗ = ‖s‖1
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Lipschitz constant for the Gradient

F ∗ := min
x

F (x)

s.t. x ∈ Rp

We say that ∇F (·) is Lipschitz with parameter LF if:

‖∇F (x) − ∇F (y)‖∗ ≤ LF‖x − y‖ for all x , y ∈ Rp

‖ · ‖∗ is the dual norm
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Matrix Operator Norm

Let M be a linear operator (matrix) M : Rp → Rn with norm ‖x‖a on Rp

and norm ‖v‖b on Rn

The operator norm of M is given by:

‖M‖a,b := max
x 6=0

‖Mx‖b
‖x‖a
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Greedy Coordinate Descent Method:
“go in the best coordinate direction”

F ∗ := min
x

F (x)

s.t. x ∈ Rp

Greedy Coordinate Descent

Initialize at x0 ∈ Rp, k ← 0

At iteration k :

1 Compute gradient ∇F (xk)

2 Compute

jk ∈ arg max
j∈{1,...,p}

{
|∇F (xk)j |

}
and

dk ← sgn(∇F (xk)jk )ejk

3 Choose step-size αk

4 Set xk+1 xk − αkd
k
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Greedy Coordinate Descent ≡ Steepest Descent in the
`1-Norm

F ∗ := min
x

F (x)

s.t. x ∈ Rp

Steepest Descent method in the `1-norm

Initialize at x0 ∈ Rp, k ← 0

At iteration k :

1 Compute gradient ∇F (xk)

2 Compute direction: dk ← arg max
‖d‖1≤1

{∇F (xk)Td}

3 Choose step-size αk

4 Set xk+1 ← xk − αkd
k



11

Review of GCD and SGD Logistic Regression FOMs for LR Non-Separable Case Separable Case Other Issues

Greedy Coordinate Descent ≡ Steepest Descent in the
�1-Norm, cont.

dk ← arg max
‖d‖1≤1

{∇F (xk)Td}

�dk
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Metrics for Evaluating Greedy Coordinate Descent

F ∗ := min
x

F (x)

s.t. x ∈ Rp

Assume F (·) is convex and ∇F (·) is Lipschitz with parameter LF :

‖∇F (x) − ∇F (y)‖∞ ≤ LF‖x − y‖1 for all x , y ∈ Rp

Two sets of interest:

S0 := {x ∈ Rp : F (x) ≤ F (x0)} is the level set of the initial point x0

S∗ := {x ∈ Rp : F (x) = F ∗} is the set of optimal solutions
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Metrics for Evaluating Greedy Coordinate Descent, cont.

S0 := {x ∈ Rp : F (x) ≤ F (x0)} is the level set of the initial point x0

S∗ := {x ∈ Rp : F (x) = F ∗} is the set of optimal solutions

Dist0 := max
x∈S0

min
x∗∈S∗

‖x − x∗‖1

S0

S⇤

Dist0 x0

(In high-dimensional machine learning problems, S∗ can be very big)
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Computational Guarantees for Greedy Coordinate Descent

Dist0 := max
x∈S0

min
x∗∈S∗

‖x − x∗‖1

Theorem: Objective Function Value Convergence (essentially [Beck and
Tetruashvil 2014], [Nesterov 2003])

If the step-sizes are chosen using the rule:

αk =
‖∇F (xk)‖∞

LF
for all k ≥ 0 ,

then for each k ≥ 0 the following inequality holds:

F (xk) − F ∗ ≤ 2LF (Dist0)2

K̂ 0 + k
<

2LF (Dist0)2

k

where K̂ 0 :=
2LF (Dist0)2

F (x0) − F ∗ .
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Computational Guarantees for GCD, cont.

Theorem: Gradient Norm Convergence

For any step-size sequence {αk} and for each k ≥ 0, it holds that:

min
i∈{0,...,k}

‖∇F (x i )‖∞ ≤ F (x0) − F ∗ + LF

2

∑k
i=0 α2

i∑k
i=0 αi

.

If the step-sizes are chosen using the rule:

αk =
‖∇F (xk)‖∞

LF
for all k ≥ 0 ,

then for each k ≥ 0 the following inequality holds:

min
i∈{0,...,k}

‖∇F (x i )‖∞ ≤
√

2LF (F (x0) − F ∗)

k + 1
.
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Computational Guarantees for GCD, cont.

Theorem: Iterate Shrinkage

For any step-size sequence {αk}, it holds for each k ≥ 0 that:

‖xk − x0‖1 ≤
k−1∑
i=0

αi .

If the step-sizes are chosen using the rule:

αk =
‖∇F (xk)‖∞

LF
for all k ≥ 0 ,

then for each k ≥ 0 it holds that:

‖xk − x0‖1 ≤
√
k

√
2(F (x0) − F ∗)

LF
.
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Stochastic Gradient Descent (SGD) Method

The problem of interest is:

F ∗ := min
x

F (x)

s.t. x ∈ Rp

Let ∇̃f (x) be a stochastic estimate of the gradient ∇F (x) at each x

Stochastic Gradient Descent method for minimizing F (x)

Initialize at x0 ∈ Rp, k ← 0

At iteration k :

1 Compute stochastic gradient ∇̃F (xk)

2 Choose step-size αk

3 Set xk+1 ← xk − αk∇̃F (xk)
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Stochastic Gradient Descent (SGD) Method, cont.

The canonical setting for SGD is minimizing a large sum (or average) of
losses:

F ∗ := min
x

F (x) := 1
n

∑n
j=1 Fj(x)

s.t. x ∈ Rp

where n � 0 and ∇̃F (x) is computed as follows:

1 Choose j ∼ {1, . . . , n} uniformly and independently

2 ∇̃F (x) ← ∇Fj(x)

Then the stochastic gradient is unbiased: E[∇̃F (x)|x ] = ∇F (x)
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Computational Guarantees for Stochastic Gradient Descent
[Bertsekas, others]

Assume that
(i) the stochastic gradient is unbiased, namely

E[∇̃F (x)|x ] = ∇F (x) for any x , and

(ii) F (·) is G -stochastically smooth: there exists G such that:

E[‖∇̃F (x)‖2
2 | x ] ≤ G 2 for any x

Theorem: Expected Convergence of Stochastic Gradient Descent

If the step-sizes are constant:

αk = ᾱ for all k ≥ 0 ,

then for each k ≥ 0 the following inequality holds:

E[F (x̄k)]− F ∗ ≤ ᾱG 2

2
+
‖x0 − x∗‖2

2

2ᾱ(k + 1)
,

where x̄k := 1
k+1

∑k
i=0 x

i .
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Logistic Regression

Logistic Regression

statistics perspective

machine learning perspective
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Logistic Regression: Statistics Perspective

Logistic Regression: Statistics Perspective
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Logistic Regression Statistics Perspective
Example: Predicting Parole Violation

Predict P(violate parole) based on age, gender, time served, offense
class, multiple convictions, NYC, etc.

Violator Male  Age TimeServed Class Multiple InCity
1           0    1 49.4       3.15     D        0      1
2           1    1 26.0       5.95     D        1      0
3           0    1 24.9       2.25     D        1      0
4           0    1 52.1      29.22     A        0      0
5           0    1 35.9      12.78     A        1      1
6           0    1 25.9       1.18     C        1      1
7           0    1 19.0       0.54     D        0      0
8           0    1 43.2       1.07     C        0      1
9           0    1 31.6       1.17     E        0      0
10          0    1 40.7       4.64     B        1      1
11          0    1 53.9      21.61     A        0      1
12          0    1 28.5       3.23     D        1      0
13          0    1 36.1       3.71     D        0      1
14          0    1 48.8       1.17     D        0      0
15          0    1 37.6       4.62     C        0      0
16          0    1 42.5       1.75     D        0      1
...       ...  ...  ...        ...   ...      ...    ...
6098        0    1 55.0       0.72     E        0      0
6099        0    1 49.6      29.88     A        0      1
6100        0    1 22.4       2.85     D        0      1
6101        0    1 44.8       1.76     D        1      0
6102        0    0 45.3       1.03     E        0      0
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Logistic Regression for Prediction

Y ∈ {−1, 1} is a Bernoulli random variable:

P(Y = 1) = p

P(Y = −1) = 1 − p

x = (x1, . . . , xp) ∈ Rp is the vector of independent variables

P(Y = 1) depends on the values of the independent variables x1, . . . , xp

Logistic regression model is:

P(Y = 1 | x) =
1

1 + e−βT x
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Logistic Regression for Prediction, continued

Logistic regression model is:

P(Y = 1 | x) =
1

1 + e−βT x

Data records are (xi , yi ), i = 1, . . . , n

Violator Male  Age TimeServed Class Multiple InCity
1           0    1 49.4       3.15     D        0      1
2           1    1 26.0       5.95     D        1      0
3           0    1 24.9       2.25     D        1      0
4           0    1 52.1      29.22     A        0      0
5           0    1 35.9      12.78     A        1      1
6           0    1 25.9       1.18     C        1      1
7           0    1 19.0       0.54     D        0      0
8           0    1 43.2       1.07     C        0      1
9           0    1 31.6       1.17     E        0      0
10          0    1 40.7       4.64     B        1      1
11          0    1 53.9      21.61     A        0      1
12          0    1 28.5       3.23     D        1      0
13          0    1 36.1       3.71     D        0      1
14          0    1 48.8       1.17     D        0      0
15          0    1 37.6       4.62     C        0      0
16          0    1 42.5       1.75     D        0      1
...       ...  ...  ...        ...   ...      ...    ...
6098        0    1 55.0       0.72     E        0      0
6099        0    1 49.6      29.88     A        0      1
6100        0    1 22.4       2.85     D        0      1
6101        0    1 44.8       1.76     D        1      0
6102        0    0 45.3       1.03     E        0      0

Let us construct an estimate of β based on the data (xi , yi ), i = 1, . . . , n
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Logistic Regression: Maximum Likelihood Estimation

max
β

(∏
yi=1

1

1 + e−βT xi

)( ∏
yi=−1

(
1 − 1

1 + e−βT xi

))

= max
β

(
n∏

i=1

1

1 + e−yiβT xi

)

≡ min
β

1

n

n∑
i=1

ln
(

1 + e−yiβ
T xi
)

=: Ln(β)
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Logistic Regression Optimization Problem

Logistic regression optimization problem is:

L∗
n := min

β
Ln(β) := 1

n

∑n
i=1 ln(1 + exp(−yiβ

T xi ))

s.t. β ∈ Rp

If yi = +1, we ideally want βT xi � 0

If yi = −1, we ideally want βT xi � 0

Therefore we ideally want β for which yiβ
T xi � 0 for very many i
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Logistic Regression Optimization Problem, continued

Logistic regression optimization problem is:

L∗n := min
β

Ln(β) :=
1
n

∑n
i=1 ln(1 + exp(−yiβ

T xi ))

s.t. β ∈ Rp
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Each logistic loss term is a 1-smoothing of max{0,−yiβ
T xi}



28

Review of GCD and SGD Logistic Regression FOMs for LR Non-Separable Case Separable Case Other Issues

Properties of the Logistic Loss Function

L∗
n := min

β
Ln(β) := 1

n

∑n
i=1 ln(1 + exp(−yiβ

T xi ))

s.t. β ∈ Rp

Denote X :=

 x1

...
xn


Proposition: Lipschitz constant of the gradient of Ln(β)

∇Ln(·) is L = 1
4n‖X‖2

1,2-Lipschitz:

‖∇Ln(β) − ∇Ln(β′)‖∞ ≤ 1
4n‖X‖2

1,2‖β − β′‖1

where ‖X‖1,2 := max
‖β‖1≤1

‖Xβ‖2
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Properties of the Logistic Loss Function, continued

L∗
n := min

β
Ln(β) := 1

n

∑n
i=1 ln(1 + exp(−yiβ

T xi ))

s.t. β ∈ Rp

Ln(·) is convex

L∗
n ≥ 0

If L∗
n = 0, then the optimum is not attained (something is “wrong”

or “very wrong”)

We will see later that “very wrong” is actually very good....

For β0 := 0 it holds that Ln(β0) = ln(2)
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Logistic Regression: Machine Learning Perspective

Logistic Regression: Machine Learning Perspective
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Logistic Regression Machine Learning Perspective
Example: Gender Classification

Classify (predict) gender based on image
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Another Example: Cancer/noncancerous cells

Classify (predict) cancer/noncancer cells based on image
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Another Example: Voters-nonvoters

Classify (predict) voters vs. nonvoters based on election data
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Binary Classification

Data: (xi , yi ) ∈ Rp × {−1, 1}, i = 1, . . . , n

x = (x1, . . . , xp) ∈ Rp is the vector of features (indep. variables)

y ∈ {−1, 1} is the set of possible responses/labels

Task: predict y based on the linear function βT x

β ∈ Rp are the model coefficients

Loss function: `(y , βT x) represents the loss incurred when the truth is y
but our classification/prediction is based on βT x

Empirical Loss Minimization Problem: min
β

1
n

n∑
i=1

`(yi , β
T xi )
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Loss Functions for Binary Classification

Some common loss functions used for binary classification

0-1 loss: �(y , βT x) := 1(yβT x < 0)

Hinge loss: �(y , βT x) := max(0, 1− yβT x)

Logistic loss: �(y , βT x) := ln(1 + exp(−yβT x))
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Advantages of Logistic Loss Function

Why use the logistic loss function for classification?

Computational advantages: convex, smooth

Fits previous statistical model of conditional probablity:

P(Y = y | x) = 1
1+exp(−yβT x)

Makes sense when the data is non-separable

Robust to misspecification of class labels
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Logistic Regression Problem of Interest, continued

Alternate versions of optimization problem add regularization and/or
sparsification:

L∗
n := min

β
Ln(β) := 1

n

∑n
i=1 ln(1 + exp(−yiβ

T xi )) +λ‖β‖p
s.t. β ∈ Rp

‖β‖0 ≤ k

Overall aspirations:

Good predictive performance on new (out of sample) observations

Models that are more interpretable (e.g., sparse)
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Computational Experiment: Greedy Coordinate Descent
(GCD)

Consider Greedy Coordinate Descent (GCD) for Logistic Regression
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Greedy Coordinate Descent for Logistic Regression

Greedy Coordinate Descent for Logistic Regression

Initialize at β0 ← 0, k ← 0

At iteration k ≥ 0:

1 Compute ∇Ln(βk)

2 Compute jk ∈ arg max
j∈{1,...,p}

|∇Ln(βk)j |

3 Set βk+1 ← βk − αksgn(∇Ln(βk)jk )ejk

Why use Greedy Coordinate Descent for Logistic Regression?

Scalable and effective when n, p � 0 and maybe p > n

GCD performs variable selection

GCD imparts implicit regularization

Just one tuning parameter (number of iterations)
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Implicit Regularization and Variable Selection Properties

Artificial example: n = 1000, p = 100, true model has 5 non-zeros
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Compare with explicit regularization schemes (`1, `2, etc.)



41

Review of GCD and SGD Logistic Regression FOMs for LR Non-Separable Case Separable Case Other Issues

How do GCD and SGD Inform Logistic Regression?

Some questions:

How do the computational guarantees for Greedy Coordinate
Descent and Stochastic Gradient Descent specialize to the case of
Logistic Regression?

Can we say anything further about the convergence properties of
these methods in the special case of Logistic Regression?

What role does problem structure/conditioning play in these
guarantees?
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Elementary Properties of the Logistic Loss Function

L∗n := min
β

Ln(β) :=
1
n

∑n
i=1 ln(1 + exp(−yiβ

T xi ))

Recall that logistic regression “ideally” seeks β for which yix
T
i β � 0 for

all i :

yi = +1 ⇒ xTi β � 0

yi = −1 ⇒ xTi β � 0
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Geometry of the Data: Separable and Non-Separable Data

(a) Data is Non-Separable (b) Data is Separable
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Very/Mild Separable/Non-Separable Data

(a) Data is Very Non-Separable (b) Data is Very Separable

(c) Data is Mildly Non-Separable (d) Data is Mildly Separable
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Separable and Non-Separable Data

Separable Data

The data is separable if there exists β̄ for which

yi · (β̄)T xi > 0 for all i = 1, . . . , n

Non-Separable Data

The data is non-separable if it is not separable, namely, every β satisfies

yi · (β)T xi ≤ 0 for at least one i ∈ {1, . . . , n}



46

Review of GCD and SGD Logistic Regression FOMs for LR Non-Separable Case Separable Case Other Issues

Separable Data and Non-Attainment of Optimum

L∗
n := min

β
Ln(β) := 1

n

∑n
i=1 ln(1 + exp(−yiβ

T xi ))

The data is separable if there exists β̄ for which

yi · (β̄)T xi > 0 for all i = 1, . . . , n

If β̄ separates the data, then Ln(θβ̄) → 0 (= L∗
n) as θ → +∞

Perhaps trying to optimize the logistic loss function is unlikely to be
effective at finding a “good” linear classifier ....
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Separable and Non-Separable Data

(a) Data is Non-Separable (b) Data is Separable
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Results in the Non-Separable Case

Results in the Non-Separable Case
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Non-Separable Data and Problem Behavior/Conditioning

Let us quantify the degree of non-separability of the data.

(a) Very non-separable data (b) Mildly non-separable data

We will relate this to problem behavior/conditioning....
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Non-Separability Condition Number DegNSEP∗

Definition of Non-Separability Condition Number DegNSEP∗

DegNSEP∗ := min
β∈Rp

1
n

∑n
i=1[yiβ

T xi ]
−

s.t. ‖β‖1 = 1

DegNSEP∗ is the least average misclassification error (over all
normalized classifiers)

DegNSEP∗ > 0 if and only if the data is strictly non-separable
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Non-Separability Measure DegNSEP∗

DegNSEP∗ := min
β∈Rp

1
n

∑n
i=1[yiβ

T xi ]
−

s.t. ‖β‖1 = 1

(a) DegNSEP∗ is large (b) DegNSEP∗ is small
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DegNSEP∗ and Problem Behavior/Conditioning

L∗
n := min

β
Ln(β) := 1

n

∑n
i=1 ln(1 + exp(−yiβ

T xi ))

DegNSEP∗ := min
β∈Rp

1
n

∑n
i=1[yiβ

T xi ]
−

s.t. ‖β‖1 = 1

Theorem: Non-Separability and Sizes of Optimal Solutions

Suppose that the data is non-separable and DegNSEP∗ > 0. Then

1 the logistic regression problem LR attains its optimum,

2 for every optimal solution β∗ of LR it holds that

‖β∗‖1 ≤ L∗
n

DegNSEP∗ ≤ ln(2)

DegNSEP∗ , and

3 for any β it holds that ‖β‖1 ≤ Ln(β)

DegNSEP∗ .
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Computational Guarantees for Greedy Coordinate Descent:
Non-Separable Case

Theorem: Computational Guarantees for Greedy Coordinate Descent:
Non-Separable Case

Consider the GCD applied to the Logistic Regression problem with

step-sizes αk := 4n‖∇Ln(βk )‖∞
‖X‖2

1,2
for all k ≥ 0, and suppose that the data is

non-separable. Then for each k ≥ 0 it holds that:

(i) (training error): Ln(βk) − L∗
n ≤ 2(ln(2))2‖X‖2

1,2

k·n·(DegNSEP∗)2

(ii) (gradient norm): min
i∈{0,...,k}

‖∇Ln(βi )‖∞ ≤ ‖X‖1,2

√
(ln(2)−L∗n )
2n·(k+1)

(iii) (regularization): ‖βk‖1 ≤
√
k
(

1
‖X‖1,2

)√
8n(ln(2) − L∗

n)
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Computational Guarantees for Greedy Coordinate Descent:
Non-Separable Case

Theorem: Computational Guarantees for Greedy Coordinate Descent:
Non-Separable Case

Consider the GCD applied to the Logistic Regression problem with

step-sizes αk := 4n‖∇Ln(βk )‖∞
‖X‖2

1,2
for all k ≥ 0, and suppose that the data is

non-separable. Then for each k ≥ 0 it holds that:

(i) (training error): Ln(βk) − L∗
n ≤ 2(ln(2))2‖X‖2

1,2

k·n·(DegNSEP∗)2

(ii) (gradient norm): min
i∈{0,...,k}

‖∇Ln(βi )‖∞ ≤ ‖X‖1,2

√
(ln(2)−L∗n )
2n·(k+1)

(iii) (regularization): ‖βk‖1 ≤
√
k
(

1
‖X‖1,2

)√
8n(ln(2) − L∗

n)
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Computational Guarantees for Stochastic Gradient
Descent: Non-Separable Case

Theorem: Computational Guarantees for Stochastic Gradient Descent:
Non-Separable Case

Consider SGD applied to the Logistic Regression problem with step-sizes

αi :=

√
8n ln(2)√

k+1‖X‖2,2‖X‖2,∞
for i = 0, . . . , k, and suppose that the data is

non-separable. Then it holds that:

(i) (training error):

E[ min
0≤i≤k

Ln(β i )]− L∗n ≤
1√
k + 1

(
(L∗n )2‖X‖2

2,∞

4
√

2 ln(2)(DegNSEP∗)2
+

√
2 ln(2)n‖X‖2,∞
‖X‖2,2

)

(ii) (gradient norm):

E
[

min
i∈{0,...,k}

‖∇Ln(β i )‖2
2

]
≤ 1√

k+1

(√
ln(2)‖X‖2,2‖X‖2,∞√

2n

)
(iii) (regularization): ‖βk‖2 ≤

√
k + 1

(√
8n ln(2)

‖X‖2,2

)



54

Review of GCD and SGD Logistic Regression FOMs for LR Non-Separable Case Separable Case Other Issues

Computational Guarantees for Stochastic Gradient
Descent: Non-Separable Case

Theorem: Computational Guarantees for Stochastic Gradient Descent:
Non-Separable Case

Consider SGD applied to the Logistic Regression problem with step-sizes

αi :=

√
8n ln(2)√

k+1‖X‖2,2‖X‖2,∞
for i = 0, . . . , k, and suppose that the data is

non-separable. Then it holds that:

(i) (training error):

E[ min
0≤i≤k

Ln(β i )]− L∗n ≤
1√
k + 1

(
(L∗n )2‖X‖2

2,∞

4
√

2 ln(2)(DegNSEP∗)2
+

√
2 ln(2)n‖X‖2,∞
‖X‖2,2

)

(ii) (gradient norm):

E
[

min
i∈{0,...,k}

‖∇Ln(β i )‖2
2

]
≤ 1√

k+1

(√
ln(2)‖X‖2,2‖X‖2,∞√

2n

)
(iii) (regularization): ‖βk‖2 ≤

√
k + 1

(√
8n ln(2)

‖X‖2,2

)
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Reaching Linear Convergence

Reaching Linear Convergence using Greedy
Coordinate Descent for Logistic Regression

For logistic regression, does GCD exhibit linear convergence?
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Some Definitions/Notation

Definitions:

R := max
i∈{1,...,n}

‖xi‖2 (maximum `2 norm of the feature vectors)

H(β∗) denotes the Hessian of Ln(·) at an optimal solution β∗

λpmin(H(β∗)) denotes the smallest non-zero (and hence positive)
eigenvalue of H(β∗)
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Reaching Linear Convergence of GCD for Logistic
Regression

Theorem: Reaching Linear Convergence of GCD for Logistic Regression

Consider GCD applied to the Logistic Regression problem with step-sizes

αk := 4n‖∇Ln(βk )‖∞
‖X‖2

1,2
for all k ≥ 0, and suppose that the data is

non-separable. Define:

ǩ :=
16p ln(2)2‖X‖4

1,2R
2

9n2(DegNSEP∗)2λpmin(H(β∗))2
.

Then for all k ≥ ǩ , it holds that:

Ln(βk) − L∗
n ≤ (Ln(βǩ) − L∗

n)

(
1 − λpmin(H(β∗))n

p · ‖X‖2
1,2

)k−ǩ

.
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Reaching Linear Convergence of GCD for Logistic
Regression, cont.

Some comments:

Proof relies on (a slight generalization of) the “generalized
self-concordance” property of the logistic loss function due to [Bach
2014]

Furthermore, we can bound:

λpmin(H(β∗)) ≥ 1
4nλpmin(XTX) exp

(
− ln(2)‖X‖1,∞

DegNSEP∗

)
As compared to results of a similar flavor for other algorithms, here
we have an exact characterization of when the linear convergence
“kicks in” and also what the rate of linear convergence is
guaranteed to be

Q: Can we exploit this generalized self-concordance property in
other ways? (still ongoing . . . )
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DegNSEP∗ and “Perturbation to Separability”

DegNSEP∗ := min
β∈Rp

1
n

∑n
i=1[yiβ

T xi ]
−

s.t. ‖β‖1 = 1

Theorem: DegNSEP∗ is the “Perturbation to Separability”

DegNSEP∗ = inf
∆x1,...,∆xn

1
n

∑n
i=1 ‖∆xi‖∞

s.t. (xi + ∆xi , yi ), i = 1, . . . , n are separable
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Illustration of Perturbation to Separability
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Results in the Separable Case

Results in the Separable Case
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Separable Data and Problem Behavior/Conditioning

Let us quantify the degree of separability of the data.

(a) Very separable data (b) Barely separable data

We will relate this to problem behavior/conditioning....
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Separability Condition Number DegSEP∗

Definition of Separability Condition Number DegSEP∗

DegSEP∗ := max
β∈Rp

min
i∈{1,...,n}

[yiβ
T xi ]

s.t. ‖β‖1 ≤ 1

DegSEP∗ maximizes the minimal classification value [yiβ
T xi ] (over all

normalized classifiers)

DegSEP∗ is simply the “maximum margin” in machine learning parlance

DegSEP∗ > 0 if and only if the data is separable
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Separability Measure DegSEP∗

DegSEP∗ := max
β∈Rp

min
i∈{1,...,n}

[yiβ
T xi ]

s.t. ‖β‖1 ≤ 1

(a) DegSEP∗ is large (b) DegSEP∗ is small
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DegSEP∗ and Problem Behavior/Conditioning

L∗
n := min

β
Ln(β) := 1

n

∑n
i=1 ln(1 + exp(−yiβ

T xi ))

DegSEP∗ := max
β∈Rp

min
i∈{1,...,n}

[yiβ
T xi ]

s.t. ‖β‖1 ≤ 1

Theorem: Separability and Non-Attainment

Suppose that the data is separable. Then DegSEP∗ > 0, L∗
n = 0, and LR

does not attain its optimum.

Despite this, it turns out that the Steepest Descent family and also
Stochastic Gradient Descent are reasonably effective at finding an
approximate margin maximizer as we shall shortly see....
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Margin function ρ(β)

Margin function ρ(β)

ρ(β) := min
i∈{1,...,n}

[yiβ
T xi ]

(a) ρ(β) is small (b) ρ(β) is large
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Computational Guarantees for Greedy Coordinate Descent:
Separable Case

Theorem: Computational Guarantees for Greedy Coordinate Descent:
Separable Case

Consider GCD applied to the Logistic Regression problem with step-sizes

αk := 4n‖∇Ln(βk )‖∞
‖X‖2

1,2
for all k ≥ 0, and suppose that the data is separable.

(i) (margin bound): there exists i ≤
⌊

3.7n‖X‖2
1,2

(DegSEP∗)2

⌋
for which the

normalized iterate β̄ i := β i/‖β i‖1 satisfies

ρ(β̄ i ) ≥ .18 ·DegSEP∗

n
.

(ii) (shrinkage): ‖βk‖1 ≤
√
k
(

1
‖X‖1,2

)√
8n ln(2)

(iii) (gradient norm): min
i∈{0,...,k}

‖∇Ln(β i )‖∞ ≤ ‖X‖1,2

√
ln(2)

2n·(k+1)
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Computational Guarantees for Greedy Coordinate Descent:
Separable Case

Theorem: Computational Guarantees for Greedy Coordinate Descent:
Separable Case

Consider GCD applied to the Logistic Regression problem with step-sizes

αk := 4n‖∇Ln(βk )‖∞
‖X‖2

1,2
for all k ≥ 0, and suppose that the data is separable.

(i) (margin bound): there exists i ≤
⌊

3.7n‖X‖2
1,2

(DegSEP∗)2

⌋
for which the

normalized iterate β̄ i := β i/‖β i‖1 satisfies

ρ(β̄ i ) ≥ .18 ·DegSEP∗

n
.

(ii) (shrinkage): ‖βk‖1 ≤
√
k
(

1
‖X‖1,2

)√
8n ln(2)

(iii) (gradient norm): min
i∈{0,...,k}

‖∇Ln(β i )‖∞ ≤ ‖X‖1,2

√
ln(2)

2n·(k+1)
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Computational Guarantees for Stochastic Gradient
Descent: Separable Case

Theorem: Computational Guarantees for Stochastic Gradient Descent:
Separable Case

Consider SGD applied to the Logistic Regression problem with step-sizes

αi :=

√
8n ln(2)

√
k+1‖X‖2,2‖X‖2,∞

for i = 0, . . . , k, where

k :=

⌊
28.1n3‖X‖2

2,2‖X‖2
2,∞

γ2(DegSEP∗)4

⌋
and γ ∈ (0, 1]. If the data is separable, then :

P
(
∃i ∈ {0, . . . , k} s.t. ρ(β̄ i ) ≥ γ(DegSEP∗)2

20n2‖X‖2,∞

)
≥ 1− γ .

where β̄ i := β i/‖β i‖1 are the normalized iterates of SGD.
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DegSEP∗ and “Perturbation to Non-Separability”

DegSEP∗ := max
β∈Rp

min
i∈{1,...,n}

[yiβ
T xi ]

s.t. ‖β‖1 ≤ 1

Theorem: DegSEP∗ is the “Perturbation to Non-Separability”

DegSEP∗ = inf
∆x1,...,∆xn

max
i∈{1,...,n}

‖∆xi‖∞

s.t. (xi + ∆xi , yi ), i = 1, . . . , n are non-separable
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Illustration of Perturbation to Non-Separability
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Other Issues

Some other topics not mentioned (still ongoing):

Other first-order methods for logistic regression (gradient descent,
accelerated gradient descent, other randomized methods, etc.

High-dimensional regime p > n, define DegNSEP∗
k and DegSEP∗

k

for restricting β to satisfy ‖β‖0 ≤ k

Numerical experiments comparing methods

Other...
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Summary

Some old and new results for Greedy Coordinate Descent and Stochastic
Gradient Descent

Analyizing these methods for Logistic Regression:
separable/non-separable cases

Non-Separable case

condition number DegNSEP∗

computational guarantees for Greedy Coordinate Descent and
Stochastic Gradient Descent, including reaching linear
convergence

Separable case

condition number DegSEP∗

computational guarantees for Greedy Coordinate Descent and
Stochastic Gradient Descent, including computing an
approximate maximum margin classifier
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Results for Some other Methods

Results for Some other Methods
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Standard Accelerated Gradient Method (AGM)

P : F ∗ := minimumx F (x)

s.t. x ∈ Rp

Lipschitz gradient: ‖∇f (y)−∇f (x)‖2 ≤ L‖y − x‖2 for all x , y ∈ Rp

Accelerated Gradient Method (AGM)

Given x0 ∈ Rp and z0 := x0, and i ← 0 . Define step-size parameters θi ∈ (0, 1]
recursively by θ0 := 1 and θi+1 satisfies 1

θ2
i+1
− 1

θi+1
= 1

θ2
i

.

At iteration k:

1 Update : y k ← (1− θk)xk + θkz
k

xk+1 ← y k − 1
L
∇f (y k)

zk+1 ← zk + 1
θk

(xk+1 − y k)
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Computational Guarantees for Accelerated Gradient
Method (AGM) for Logistic Regression

Theorem: Computational Guarantees for Accelerated Gradient Method
(AGM) for Logistic Regression

Consider the AGM applied to the Logistic Regression problem initiated at
β0 := 0, and suppose that the data is non-separable. Then for each
k ≥ 0 it holds that:

(training error): Ln(βk) − L∗
n ≤

2(ln(2))2‖X‖2
2,2

n · (k + 1)2 · (DegNSEP∗)2
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AGM with Simple Re-Starting (AGM-SRS)

Assume that 0 < F ∗ := minimumx F (x)

Accelerated Gradient Method with Simple Re-Starting (AGM-SRS)

Initialize with x0 ∈ Rp .
Set x1,0 ← x0 , i ← 1 .

At outer iteration i :

1 Initialize inner iteration. j ← 0

2 Run inner iterations. At inner iteration j :

If
F (xi,j)

F (xi,0)
≥ 0.8 , then:

xi,j+1 ← AGM(F (·), xi,0, j + 1) ,

j ← j + 1, and Goto step 2.

Else xi+1,0 ← xi,j , i ← i + 1, and Goto step 1.

“xi,j ← AGM(F (·), xi,0, j)” denotes assigning to xi,j the jth iterate of AGM
applied with objective function F (·) using the initial point xi,0 ∈ Rp
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Computational Guarantee for AGM with Simple
Re-Starting for Logistic Regression

Computational Guarantee for Accelerated Gradient Method with Simple
Re-Starting for Logistic Regression

Consider the AGM with Simple Re-Starting applied to the Logistic
Regression problem initiated at β0 := 0, and suppose that the data is
non-separable. Within a total number of computed iterates k that does
not exceed

5.8‖X‖2,2√
n · DegNSEP∗ +

8.4‖X‖2,2 · L∗
n√

n · DegNSEP∗ · √
ε

,

the algorithm will deliver an iterate βk for which

Ln(βk) − L∗
n ≤ ε .
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Back-up Slides: Related Results for AdaBoost

Back-up Slides: Related Results for AdaBoost
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AdaBoost: First Problem of Interest

AdaBoost is also Greedy Coordinate Descent, but replaces the logistic
loss function with the log-exponential loss:

L∗
l := minλ≥0 Ll(λ) = ln

(
1
m

∑m
i=1 exp (−(Aλ)i )

)
.

Data: (x1, y1) . . . , (xm, ym) where xi ∈ Rn is the i th feature vector
and yi ∈ {−1, +1}
Here A := YX, i.e., Aij := yi (xi )j

Note that λ∗ is a linear separator of the data if and only if Aλ∗ > 0

Assume for convenience that for every column Aj , −Aj is also a column
of A



80

Review of GCD and SGD Logistic Regression FOMs for LR Non-Separable Case Separable Case Other Issues

AdaBoost: Second Problem of Interest

∆n := {x ∈ Rn : eT x = 1, x ≥ 0} is the standard simplex in Rn

Recall that λ∗ is a linear separator of the data if and only if Aλ∗ > 0

The margin of a classifier λ ∈ Rn is:

p(λ) := min
i∈{1,...,m}

(Aλ)i = min
w∈∆m

wTAλ

It makes sense to look for a classifier with large margin, i.e., to solve:

M : ρ∗ := max
λ∈∆n

p(λ) .
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Dual of the Maximum Margin Problem

The “edge” of a vector of weights on the data, w ∈ ∆m, is:

f (w) := max
j∈{1,...,n}

wTAj = max
λ∈∆n

wTAλ

The (linear programming) dual of the maximum margin problem is the
problem of minimizing the edge:

E : f ∗ := min
w∈∆m

f (w) ,

AdaBoost is three algorithms:

A boosting method based on a scheme for (multiplicatively)
updating a vector of weights on the data

Greedy Coordinate Descent applied to minimize the log-exponential
loss function

A version of the Mirror Descent method applied to the above
problem E
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Computational Guarantees for AdaBoost

Theory for Greedy Coordinate Descent and Mirror Descent leads to
computational guarantees for AdaBoost:

Step-Size Strategy Separable Data Non-Separable Data
Margin Bound Gradient Bound Loss Bound

ρ∗ − p(λk+1) min
i∈{0,...,k}

‖∇Ll (λ̂
i )‖∞ Ll (λ̂

k )− L∗l

“edge rule:” αk = ‖∇Ll (λ̂
k )‖∞

√
2 ln(m)
k+1

8 ln(m)2

(NSEP∗
l

)2k

“line-search:” αk = 1
2

ln
(

1+rk
1−rk

) √
2 ln(m)
k+1

8 ln(m)2

(NSEP∗
l

)2k

“constant:” αi :=
√

2 ln(m)
k+1

√
2 ln(m)
k+1

√
2 ln(m)
k+1

for i = 0, . . . , k

“adaptive:” αk =
√

2 ln(m)
k+1

√
ln(m)

2
[2+ln(k+1)]

2(
√

k+2−1)

√
ln(m)

2
[2+ln(k+1)]

2(
√

k+2−1)

NSEP∗
l is a “non-separability condition number” for log-exponential loss




