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How can optimization inform statistics (and machine

learning)?

Paper in preparation (this talk):

Condition Number Analysis of Logistic Regression, and its Implications
for First-Order Solution Methods

A “cousin” paper of ours:

A New Perspective on Boosting in Linear Regression via Subgradient
Optimization and Relatives



Outline

@ Optimization primer: two basic first-order methods for convex
optimization

Logistic regression perspectives: statistics “vs.” machine learning

A pair of condition numbers for the logistic regression problem:
e when the sample data is non-separable:
a condition number for the degree of non-separability of the
dataset
informing the convergence guarantees of Greedy Coordinate
Descent and Stochastic Gradient Descent (SGD)
guarantees on reaching linear convergence (thanks to Bach)

when the sample data is separable:
a condition number for the degree of separability of the
dataset
informing convergence guarantees to deliver an approximate
maximum margin classifier
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Review of Two Basic First-Order Methods for Convex

Optimization

Two Basic First-Order Methods for Convex Optimization:

o Greedy Coordinate Descent method

“go in the best coordinate direction”

Stochastic Gradient Descent (SGD) method

“go in the direction of the negative of the stochastic estimate
of the gradient”
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Convex Optimization

The problem of interest is:

Fr = min F(x) J

st. x€RP

where F(-) is differentiable and convex:

FOx+ (1 —=XN)y) < AF(x)+ (1 —=X)F(y) forall x, y, and all A € [0,1]

Let ||x|| denote the given norm on the variables x € RP
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Norms and Dual Norms

Let ||x|| be the given norm on the variables x € R
The dual norm is ||s||. := max,{s"x : ||x|| < 1}

Some common norms and their dual norms:

Name Norm Definition Dual Norm

fronorm [Ix]l2 Ixlla = /30y b2 sl = llsll
fr-norm - [x|l1 lIxlle = 227 Ix] Isll« = lIslloo
loc-norm  [[x[ls [xlloo = max{|xa|, ..., |xp[} [Isll« = llsllx
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Lipschitz constant for the Gradient

st. x€RP

Fr = min F(x) J

We say that VF(-) is Lipschitz with parameter Lg if:

[VF(x) = VE()l« < Lellx =yl forallx,y € R

| - I|« is the dual norm
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Matrix Operator Norm

Let M be a linear operator (matrix) M : RP — R" with norm ||x||, on R”
and norm ||v||p on R"

The operator norm of M is given by:

[[Mx]l5

11l

M =
1MIla,p = max
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Greedy Coordinate Descent Method

“go in the best coordinate direction”

F* = min F(x)
st. xeRP

v

Greedy Coordinate Descent

Initialize at x° € RP, k + 0

At iteration k :
@ Compute gradient VF(x¥)
Compute
o jx Earg e }{|VF(Xk)j|} and
o d* Sgn(VF( “Yi)eie
Choose step-size o

Set xkt1  xk — qdk 9
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Greedy Coordinate Descent = Steepest Descent in the

/1-Norm

F* = min F(x)
s.t. xeRP

Steepest Descent method in the #1-norm

Initialize at xX° € R?, k < 0

At iteration k :
@ Compute gradient VF(x¥)

Compute direction: d* « arg”(rpuaél{VF(xk)Td}
1=

Choose step-size o

Set xkt1 « xk — qd

10
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Greedy Coordinate Descent = Steepest Descent in the

¢/1-Norm, cont.

d* < arg max {VF(x*)Td
gl\dlhgl{ ()"}

11
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Metrics for Evaluating Greedy Coordinate Descent

st. x€RP

F* = mXin F(x) J

Assume F(-) is convex and VF(-) is Lipschitz with parameter Lg:

IVF(x) = VF(¥)loo < Lf|lx—yl|j1 forall x,y € RP

Two sets of interest:
So = {x € RP: F(x) < F(x%)} is the level set of the initial point x°

S* :={x € RP: F(x) = F*} is the set of optimal solutions

12
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Metrics for Evaluating Greedy Coordinate Descent, cont.

So:={x € RP: F(x) < F(x®)} is the level set of the initial point x°
S* = {x € RP: F(x) = F*} is the set of optimal solutions

Distg := max min |[|x — x*||1
XESy x*€S*

(In high-dimensional machine learning problems, S* can be very big) 13
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Computational Guarantees for Greedy Coordlnate Descent

Distg := max min ||x — x*||1
XESy x*ES*

Theorem: Objective Function Value Convergence (essentially [Beck and

Tetruashvil 2014], [Nesterov 2003])

If the step-sizes are chosen using the rule:

_IVFC)llse

L, forall k>0,

then for each k > 0 the following inequality holds:

2LF(DiSto)2 < 2LF(DiSt0)2

F(x¥)— F* < =—
) T KO+ k k
where KO := 2L (O
T OF(x%) —
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Computational Guarantees for GCD cont.

Theorem: Gradient Norm Convergence

For any step-size sequence {ay} and for each k > 0, it holds that:

F(x®) — F* + L3k o

min VF(x' <
min IVF() < o -

If the step-sizes are chosen using the rule:

_ Vel

L forall k >0,

then for each k > 0 the following inequality holds:

. ,. 2L (F(0) — F7)
<
i NVFED e < \/ kt1

15
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Computational Guarantees for GCD, cont.

Theorem: Iterate Shrinkage
For any step-size sequence {a}, it holds for each k > 0 that:

k—1
IxF =X < ) i
i=0

If the step-sizes are chosen using the rule:

k
ak:M for all k >0,
Le

then for each k > 0 it holds that:

0”1 < \/F 2(F(XO)_F*)
= —LF

||xk — X

16
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Stochastic Gradient Descent (SGD) Method

The problem of interest is:

F* = min F(x) J

st. x€RP

Let Vf(x) be a stochastic estimate of the gradient VF(x) at each x

Stochastic Gradient Descent method for minimizing F(x)

Initialize at x° € RP, k < 0

At iteration k :
@ Compute stochastic gradient VF(x*)
@ Choose step-size oy

Q Set x*1 « xk — a, VF(x¥)

17
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Stochastic Gradient Descent (SGD) Method, cont.

The canonical setting for SGD is minimizing a large sum (or average) of
losses:

F* = mXin F(x):=1 ;:1 Fi(x)
st. xeRP

where n>> 0 and VF(x) is computed as follows:

@ Choose j ~ {1,...,n} uniformly and independently
@ VF(x) «+ VFi(x)

Then the stochastic gradient is unbiased: E[V F(x)|x] = VF(x)
18
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Computational Guarantees for Stochastic Gradie

[Bertsekas, others]

Assume that
(i) the stochastic gradient is unbiased, namely

E[VF(x)|x] = VF(x) for any x , and
(i) F(-) is G-stochastically smooth: there exists G such that:
E[”ﬁF(X)”% | x] < G2 for any x

Theorem: Expected Convergence of Stochastic Gradient Descent

If the step-sizes are constant:
ar=a forall k>0,

then for each k > 0 the following inequality holds:

K ¢ aG® | |Ix° = x*|3
_ < 22 it 72 N2
EFGN - F = 2a(k+1)
1

ok ko
where X 1= =5 > "/ x' .

19
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Logistic Regression

Logistic Regression

° statistics perspective

° machine learning perspective

20
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Logistic Regression: Statistics Perspective

Logistic Regression: Statistics Perspective

21
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Logistic Regression Statistics Perspective

Example: Predicting Parole Violation

Predict P(violate parole) based on age, gender, time served, offense
class, multiple convictions, NYC, etc.

Violator Male Age TimeServedClass Multiple InCity
1

1 0 149.4 3.15 D 0

2 1 126.0 5.95 D 1 0
3 0 124.9 2.25 D 1 0
4 0 152.1 29.22 A 0 0
5 0 135.9 12.78 A 1 1
6 0 125.9 1.18 C 1 1
7 0 119.0 0.54 D 0 0
8 0 143.2 1.07 C 0 1
9 0 131.6 1.17 E 0 0
10 0 140.7 4.64 B 1 1
11 0 153.9 21.61 A 0 1
12 0 1 28.5 3.23 D 1 0
13 0 136.1 3.71 D 0 1
14 0 148.8 1.17 D 0 0
15 0 137.6 4.62 C 0 0
16 0 142.5 1.75 D 0 1
6098 0 155.0 0.72 E 0 0
6099 0 149.6 29.88 A 0 1
6100 0 122.4 2.85 D 0 1
6101 0 144.8 1.76 D 1 0
6102 0 0 45.3 1.03 E 0 0

22
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Logistic Regression for Prediction

Y € {—1,1} is a Bernoulli random variable:

x = (x1,...,Xp) € RP is the vector of independent variables
P(Y = 1) depends on the values of the independent variables xi, ..., x,

Logistic regression model is:

1

PY=11x) = 1 m J

23
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Logistic Regression for Prediction, continued

Logistic regression model is:

P(Y=1|x) =

Data records are (x;,y;), i=1,...,n

Violator Male Age TimeServed Class Multiple InCity
149.4 3.15 )

1 o 1 D 1
2 1 126.0 5.95 D 1 0
3 o 124.9 2.25 D 1 0
4 0 152.1 29.22 A 0 [
5 0 135.9 12.78 A 1 1
6 0 125.9 1.18 C 1 1
7 0 119.0 0.54 D [ [
8 0 143.2 1.07 C 0 1
9 0 131.6 1.17 E 0 0
10 0 140.7 4.64 B 1 1
11 0 153.9 21.61 A [ 1
12 0 128.5 3.23 D 1 0
13 0 136.1 3.71 D 0 1
14 [ 148.8 1.17 D 0 0
15 [ 137.6 4.62 C 0 0
16 o 142.5 1.75 D 0 1
6098 o 155.0 0.72 E 0 0
6099 0 149.6 29.88 A [ 1
6100 0 122.4 2.85 D 0 1
6101 [ 144.8 1.76 D 1 0
6102 o 0 45.3 1.03 E 0 0

Let us construct an estimate of 3 based on the data (x;,y;), i=1,...,n 24
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Logistic Regression: Maximum Likelihood Estimation

1 1
- - 1- —
mé'ax <J:[1 1+ eﬁTX,.> ( H ( 1+ eﬁTx,-))

yi=—1

- 1
= m;x (H 1 n e—}’iﬁTXi>

i=1

= mﬁin % i In (1 + e_y’ﬂTX") =: Ln(B)

i=1

25



Logistic Regression
000000@®00000000000000

Logistic Regression Optimization Problem

Logistic regression optimization problem is:

Ly = mﬂin L,(B) == %Z;’:l In(1 + exp(—y;B7x))
st. BERP

If y; = +1, we ideally want 37x; > 0
If y; = —1, we ideally want 37 x; < 0

Therefore we ideally want 3 for which y;37 x; > 0 for very many i

26
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Logistic Regression Optimization Problem, continued

Logistic regression optimization problem is:

Ly = min La(B) := 5 370 In(1 + exp(—yiBTxi))
st. BERP
Loss

3

25

Logistic Loss

- - - 0 1 2 3
3 2 1 VBT

Each logistic loss term is a 1-smoothing of max{0, —y;3" x;} 27
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Properties of the Logistic Loss Function

Ly = min Ly(B):= 22 In(L + exp(—yiBT X))
st. feERP
X1
Denote X :=
Xn

Proposition: Lipschitz constant of the gradient of L,(5)

VLa(-) is L= 7=|X||3 ,-Lipschitz:

IVLa(B) = VLa(B)lloo < 75 IXI1T 2018 — B'llx

where || X][[12 := max [|Xf]2
IXlha = max, X

28
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Properties of the Logistic Loss Function, continued

Ly = mﬁin Ln(B) == 237 1 In(1 + exp(—yiBT X))
st. BERP
@ L,(-) is convex
e LF>0
@ If L% =0, then the optimum is not attained (something is “wrong”

or “very wrong")

@ We will see later that “very wrong” is actually very good....

For 8% := 0 it holds that L,(3°) = In(2)

29
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Logistic Regression: Machine Learning Perspective

Logistic Regression: Machine Learning Perspective

30
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Logistic Regression Machine Learning Perspective

Example: Gender Classification

Classify (predict) gender based on image

31
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Another Example: Cancer/noncancerous cells

Classify (predict) cancer/noncancer cells based on image

32
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Another Example: Voters-nonvoters

Classify (predict) voters vs. nonvoters based on election data

33
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Binary Classification

Data: (x;,y;) € RP x {-1,1}, i=1,...,n

@ x = (x1,...,X%p) € RP is the vector of features (indep. variables)

@ y € {—1,1} is the set of possible responses/labels

Task: predict y based on the linear function 37 x

@ 3 € RP are the model coefficients

Loss function: ¢(y, 37 x) represents the loss incurred when the truth is y
but our classification /prediction is based on 57 x

Empirical Loss Minimization Problem: m|n —Z@(y,,ﬂ X;)

34
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Loss Functions for Binary Classification

Some common loss functions used for binary classification
@ 0-1 loss: Uy,B"x) :=1(yB"x < 0)
@ Hinge loss: Uy, BTx) :=max(0,1 — y37x)
@ Logistic loss:  £(y,37x) :=In(1+ exp(—yB7 x))

35

Loss

3
25

2
15

0-1 Loss
Hinge Los

0.5

0

3 -2 1

Logistic Loss

0o 1

3

yipTx 35
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Advantages of Logistic Loss Function

Why use the logistic loss function for classification?
@ Computational advantages: convex, smooth
@ Fits previous statistical model of conditional probablity:
_ _ 1
P(Y =Y | X) T 14exp(—yBTx)
@ Makes sense when the data is non-separable

@ Robust to misspecification of class labels

Loss

0-1 Loss

Hinge Los! L
05 Logistic Loss

K 2 1 0 1 2 3
3 VBT,

36
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Logistic Regression Problem of Interest, continued

Alternate versions of optimization problem add regularization and/or
sparsification:

L = min La(f):= 5 i1 In(1 + exp(=yiBTxi)) +AlIB],
st. BERP
1Bllo < k

Overall aspirations:
@ Good predictive performance on new (out of sample) observations

@ Models that are more interpretable (e.g., sparse)

37
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Computational Experiment: Greedy Coordinate Descent

(GCD)

Consider Greedy Coordinate Descent (GCD) for Logistic Regression

38
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Greedy Coordinate Descent for Logistic Regression

Greedy Coordinate Descent for Logistic Regression

Initialize at 3% < 0,k < 0

At iteration k > 0:
© Compute VL,(8)
@ Compute jx € arg max _|VL,(8%);|
Jj€{1,....,p}

© Set B4t Bk — aysgn(VL,(6%);) e,

Why use Greedy Coordinate Descent for Logistic Regression?
@ Scalable and effective when n, p > 0 and maybe p > n
@ GCD performs variable selection

@ GCD imparts implicit regularization

@ Just one tuning parameter (number of iterations) 39
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Implicit Regularization and Variable Selection Properties

Artificial example: n = 1000, p = 100, true model has 5 non-zeros

Coefficient Index

Logistic Loss Value
=
=
Coefficient Value

Iteration Iteration

Compare with explicit regularization schemes (¢, {3, etc.)
40
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How do GCD and SGD Inform Logistic Regression?

Some questions:

@ How do the computational guarantees for Greedy Coordinate
Descent and Stochastic Gradient Descent specialize to the case of
Logistic Regression?

@ Can we say anything further about the convergence properties of
these methods in the special case of Logistic Regression?

@ What role does problem structure/conditioning play in these
guarantees?

41
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Elementary Properties of the Logistic Loss Function

Ly = mﬂin L,(B) = %27:1 In(1 + exp(—y;37x)) J

Recall that logistic regression “ideally” seeks (3 for which y;x. 3 >> 0 for
all i :

0y =+1l=x'8>0
0oy =-1=x">0

Loss

Logistic Less
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Geometry of the Data: Separable and Non-Separable Data

(a) Data is Non-Separable (b) Data is Separable

43
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Very/Mild Separable/Non-Separable Data

(b) Data is Very Separable

(c) Data is Mildly Non-Separable (d) Data is Mildly Separable

44
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Separable and Non-Separable Data

Separable Data

The data is separable if there exists 5 for which

vi-(B)'x; >0 foralli=1,...,n

Non-Separable Data

The data is non-separable if it is not separable, namely, every 3 satisfies

vi-(B)Tx; <0 for at least one i € {1,...,n}

45
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Separable Data and Non-Attainment of Optimum

Ly = mﬁin Lo(B) == 237 1 In(1 + exp(—yiBTx;)) J

The data is separable if there exists 5 for which

}/i'(B)TX;>O forall i=1,...,n

If B separates the data, then L,(63) — 0 (= L}) as § — +o0

Perhaps trying to optimize the logistic loss function is unlikely to be
effective at finding a “good” linear classifier ....

46
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Separable and Non-Separable Data

(a) Data is Non-Separable (b) Data is Separable

47
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Results in the Non-Separable Case

Results in the Non-Separable Case

48
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Non-Separable Data and Problem Behavior/Conditioning

Let us quantify the degree of non-separability of the data.

(a) Very non-separable data (b) Mildly non-separable data

We will relate this to problem behavior/conditioning....

49
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Non-Separability Condition Number DegNSEP*

Definition of Non-Separability Condition Number DegNSEP*
DegNSEP* := min IS iBTxi

BERP n

s.t. I8lls =1

DegNSEP™ is the least average misclassification error (over all
normalized classifiers)

DegNSEP* > 0 if and only if the data is strictly non-separable

50
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Non-Separability Measure DegNSEP*

* . 1 n BT s ll=
DegNSEP™ = min 22 lyiB xi]

s.t. ||ﬁ||1 =1

(a) DegNSEP” is large (b) DegNSEP* is small

51
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DegNSEP* and Problem Behawor/Condltlonlng

Lo = mﬂin L,(B) == %Z?:l In(1 + exp(—y;B7x))

DegNSEP” :=  min 5 alyiB X
st. |BllhL=1

<

Theorem: Non-Separability and Sizes of Optimal Solutions

Suppose that the data is non-separable and DegNSEP* > 0. Then

© the logistic regression problem LR attains its optimum,

@ for every optimal solution 8* of LR it holds that
L* < In(2)

18*)L < DegNSEP* — DegNSEP* ' and
Ly
@ for any 3 it holds that ||8]j; < % '

52
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Computational Guarantees for Greedy Coordinate Descent:
Non-Separable Case

Theorem: Computational Guarantees for Greedy Coordinate Descent:
Non-Separable Case

Consider the GCD applled to the Logistic Regression problem with
step-sizes ay : LTL(% for all k > 0, and suppose that the data is
non-separable. Then for each k > 0 it holds that:

: - ) . 2(In(2))?[1X13,
(i) (training error): L,(8%) —L; < WNSEE’*Z)Z

(i) (gradient norm): __min _ [[VLo(3)e < X1z L)

gooog

(iii) (regularization): ||8%||; < \/E(lthz) 8n(In(2) — Ly)

53
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Computational Guarantees for Greedy Coordinate Descent:
Non-Separable Case

Theorem: Computational Guarantees for Greedy Coordinate Descent:
Non-Separable Case

Consider the GCD applled to the Logistic Regression problem with
step-sizes ay : LTL(% for all k > 0, and suppose that the data is
non-separable. Then for each k > 0 it holds that:

] e In(2))?[|X
(i) (training error): L,(8%) —L; < %

(i) (gradient norm): __min _ [[VLo(3)e < X1z LAt

gooog

(iii) (regularization): ||8%||; < \/;(IIX|1|1,2> 8n(In(2) — Ly)

53
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Computatlonal Guarantees for Stochastic Gradient
Descent: Non-Separable Case

Theorem: Computational Guarantees for Stochastic Gradient Descent:
Non-Separable Case

Consider SGD applied to the Logistic Regression problem with step-sizes

= V&nn@ o .
= T X X for i =0,...,k, and suppose that the data is

non-separable. Then it holds that:

(i) (training error):

. f o 1 (L3P 1IX113, 00 V/21n(2)n[|X 12,00
]E[o?,-'gk Lo(B) = La < Vk+1 (4M(chNSEp*)2 + 1X]2,2

(ii) (gradient norm):

EL ||VL ([3)”2] < 1 (x/@llxuz,znxu2,w>

Vk+1 V2n

,,,,,

(iii) (regularization): [|8%[. < vk +1 (V”i"”'z”f)
54
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Computatlonal Guarantees for Stochastic Gradient
Descent: Non-Separable Case

Theorem: Computational Guarantees for Stochastic Gradient Descent:
Non-Separable Case

Consider SGD applied to the Logistic Regression problem with step-sizes

= V&nn@ o .
= T X X for i =0,...,k, and suppose that the data is

non-separable. Then it holds that:

(i) (training error):

. f o 1 (L3P 1IX113, 00 V/21n(2)n[|X 12,00
]E[o?,-'gk Lo(B) = La < vk +1 (4M(chNSEp*)2 + 1X]2,2

(ii) (gradient norm):

EL ||VL ([3)”2] < 1 (x/@llxuz,znxu2,w>

Vk+1 \V2n

,,,,,

(iii) (regularization): [8%> < vk + 1 (V”i"”'z”f)
54
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Reaching Linear Convergence

Reaching Linear Convergence using Greedy
Coordinate Descent for Logistic Regression

For logistic regression, does GCD exhibit linear convergence?

55
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Some Definitions/Notation

Definitions:

@ R:= max |xi|2 (maximum ¢ norm of the feature vectors)

EEREE)

@ H(B*) denotes the Hessian of L,(-) at an optimal solution 5*

@ Mpmin(H(B8*)) denotes the smallest non-zero (and hence positive)
eigenvalue of H((3*)

56
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Reaching Linear Convergence of GCD for Logistic
Regression

Theorem: Reaching Linear Convergence of GCD for Logistic Regression

Consider GCD appl|ed to the Logistic Regression problem with step-sizes
% for all k > 0, and suppose that the data is

non-separable. Define:

Q=

- 16p In(2)?[|X]|1 ,R?
~ 9m2(DegNSEP 2 A pmin(H(8*))?

Then for all k > k, it holds that:

k—
ky _ g* ky  g# pmm( (ﬁ*))

57
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Reaching Linear Convergence of GCD for Logistic

Regression, cont.

Some comments:

@ Proof relies on (a slight generalization of) the “generalized
self-concordance” property of the logistic loss function due to [Bach
2014]

@ Furthermore, we can bound:

In(2)[[X][x

1 T ,00

Moin(H5) = (KX exp (~ TN

@ As compared to results of a similar flavor for other algorithms, here
we have an exact characterization of when the linear convergence
“kicks in” and also what the rate of linear convergence is
guaranteed to be

@ Q: Can we exploit this generalized self-concordance property in

other ways? (still ongoing ...) .
5
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DegNSEP* and “Perturbation to Separability”

* 2 1 n T,.1—
DegNSEP™ = min 2 i1 lyiB’ xi]

s.t. 18] =1

Theorem: DegNSEP™ is the “Perturbation to Separability”

* 2 1 n
DegNSEP* = AX1,I.r?fAXn =2 im 1Axi]| oo

s.t. (xi + Ax;, y;),i =1,...,n are separable

59
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lllustration of Perturbation to Separability

60
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Results in the Separable Case

Results in the Separable Case

61
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Separable Data and Problem Behavior/Conditioning

Let us quantify the degree of separability of the data.

(a) Very separable data (b) Barely separable data

We will relate this to problem behavior/conditioning....

62
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Separability Condition Number DegSEP*

Definition of Separability Condition Number DegSEP*

DegSEP* := i BT x;
°g max o fpin LB
s.t. 18] <1

DegSEP* maximizes the minimal classification value [y;37 x;] (over all
normalized classifiers)

DegSEP™ is simply the “maximum margin” in machine learning parlance

DegSEP* > 0 if and only if the data is separable
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Separable Case
000®000000

Separability Measure DegSEP*

DegSEP™ := max min }D/,ﬂTx,-]

BERP i€{l,...,n
s.t. ||6||1 < 1
° oo ° ¢ ° ° ° S .o ° ° R
o o ¢ S S ° ° °

®e ° " R L . °, .. o .

o ©® L4 o e o N o °

h/ ° -' ° ° L/ .o L4 ‘ ° *

° L ° o ° A . e

(2) DegSEP* is large (b) DegSEP™ is small
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Separable Case
0000®00000

DegSEP* and Problem Behavior/Conditioning

Ly = mﬂi" Lo(B) := 5 iy In(L + exp(—yiB7 xi))
DegSEP* := i BT x;
& B el
st. |BlL<1

Theorem: Separability and Non-Attainment

Suppose that the data is separable. Then DegSEP* > 0, L% =0, and LR
does not attain its optimum.

y

Despite this, it turns out that the Steepest Descent family and also
Stochastic Gradient Descent are reasonably effective at finding an

approximate margin maximizer as we shall shortly see.... 65



Separable Case
00000e0000

Margin function p(53)

Margin function p(8)

°o ° o
° b4 ° °
® oo ° . ® oo °
° °
° o o o
.. L[] .. L[]
______ ° °
________ ° ° ° ° ° °
e©® © el e ©® o
o T ° o ° o
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e ° ° d ° °
.... ° '.o° °
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(a) p(B) is small (b) p(B) is large
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Separable Case
0000008000

Computatlonal Guarantees for Greedy Coordinate Descent:
Separable Case

Theorem: Computational Guarantees for Greedy Coordinate Descent:
Separable Case

Consider GCD applled to the Logistic Regression problem with step-sizes

4n||VL, (

QK = IXIZ “‘X’ for all k > 0, and suppose that the data is separable.

_ ; : s j < | MR
(i) (margin bound): there exists i < {(DegSEP*)Z

normalized iterate B’ := 3'/||8'||1 satisfies

J for which the

A7) > .18 - DegSEP*

n

(ii) (shrinkage): [|8%|l: < \/E(IIXII12> v/8nIn(2)

Q ] 9 . i - < In(2)
(i) (gradient norm) ie{rgj!‘r-n’k} IVL(B) oo < [I1X]l1,2

2n-(k+1)

Other Issues
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Computatlonal Guarantees for Greedy Coordinate Descent:
Separable Case
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Separable Case  Other Issues
0000000800 00

Computational Guarantees for Stochastic Gradient
Descent: Separable Case

Theorem: Computational Guarantees for Stochastic Gradient Descent:
Separable Case

Consider SGD applied to the Logistic Regression problem with step-sizes

V/8nin(2) for i =0,.

e T T k where
= VEHIXI2,201XT2,00 '

P 28.1° || X[13.211X 13,0
' 72(DegSEP*)*
and v € (0, 1]. If the data is separable, then :

. - 7(DegSEP*)?
e Y. > 20n21X11, > a '
IP’(EIIG{O’ K} st p(8) 2 SopiXem ) 2 177

where 3" := 3'/||8'||1 are the normalized iterates of SGD.
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Separable Case
0000000080

DegSEP™ and “Perturbation to Non-Separability”

DegSEP* := i BT x;
°g max i LBt
s.t. ||ﬂ||1 < 1

Theorem: DegSEP™ is the “Perturbation to Non-Separability”

DegSEP* = inf max ||Axi|lco

Axy,...,Ax, i€{l,...,n}

s.t. (xi + Ax;,yi),i =1,...,n are non-separable
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Separable Case
000000000e

lllustration of Perturbation to Non-Separability
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Other Issues
0

Other Issues

Some other topics not mentioned (still ongoing):

@ Other first-order methods for logistic regression (gradient descent,
accelerated gradient descent, other randomized methods, etc.

@ High-dimensional regime p > n, define DegNSEP} and DegSEP}
for restricting S to satisfy ||8]lo < k

@ Numerical experiments comparing methods

@ Other...
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Other Issues
oce

Summary

@ Some old and new results for Greedy Coordinate Descent and Stochastic
Gradient Descent

@ Analyizing these methods for Logistic Regression:
separable/non-separable cases

@ Non-Separable case

o condition number DegNSEP*

e computational guarantees for Greedy Coordinate Descent and
Stochastic Gradient Descent, including reaching linear
convergence

@ Separable case

o condition number DegSEP*

e computational guarantees for Greedy Coordinate Descent and
Stochastic Gradient Descent, including computing an
approximate maximum margin classifier 72



Results for Some other Methods

Results for Some other Methods

73



Standard Accelerated Gradient Method (AGM)

P: F*:= minimumx F(x)

st. xeRP

Lipschitz gradient: ||[Vf(y) — Vf(x)|l2 < L|ly — x]|2 for all x,y € R?

Accelerated Gradient Method (AGM)

Given x° € R? and 2° ,and i < 0. Deflne step- 5|ze parameters 6; € (0, 1]

recursively by 6y := 1 and 0,+1 satisfies = s =

9i+1 0it1 02 .
At iteration k:
@ Update :  y* < (1 — 0x)x* + Ok 2"
XK yf = 1VF(YY)

k1 ok Tk(xk+1 9
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Computational Guarantees for Accelerated Gradient

Method (AGM) for Logistic Regression

Theorem: Computational Guarantees for Accelerated Gradient Method
(AGM) for Logistic Regression

Consider the AGM applied to the Logistic Regression problem initiated at
B° :=0, and suppose that the data is non-separable. Then for each
k > 0 it holds that:

2(In(2))?[1X]3 2
ni . k _ | * < )
(training error): L,(8*)— L < n-(k+1)2- (DegNSEP")?
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AGM with Simple Re-Starting (AGM-SRS)

Assume that 0 < F* := minimum, F(x)

Accelerated Gradient Method with Simple Re-Starting (AGM-SRS)

Initialize with x° € R .
Setx1,0<—x° i1

At outer iteration i:

@ Initialize inner iteration. j < 0
@ Run inner iterations. At inner iteration J:

if FO0) S 08 then:
F(X,‘,o)

Xij+1 <= AGM(F(-), xi0, j+1),
Jj < Jj+1, and Goto step 2.

Else xj41,0 ¢ xij, i < i+ 1, and Goto step 1.

“xj,j <= AGM(F(-), xi,0, j)" denotes assigning to x;; the jth iterate of AGM
applied with objective function F(-) using the initial point x;o € RP 76



Computational Guarantee for AGM with Simple
Re-Starting for Logistic Regression

Computational Guarantee for Accelerated Gradient Method with Simple
Re-Starting for Logistic Regression

Consider the AGM with Simple Re-Starting applied to the Logistic
Regression problem initiated at 3° := 0, and suppose that the data is
non-separable. Within a total number of computed iterates k that does
not exceed

5.8]X|l2,2 n 8.4||X||2,2 - Ly
\/n - DegNSEP”* v/n-DegNSEP* - (/2 ’

the algorithm will deliver an iterate 5% for which

LB - L < ¢.
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Back-up Slides: Related Results for AdaBoost

Back-up Slides: Related Results for AdaBoost
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AdaBoost: First Problem of Interest

AdaBoost is also Greedy Coordinate Descent, but replaces the logistic
loss function with the log-exponential loss:

L= minze LK) = WEXTee((AN) . |

@ Data: (x1,1) ..., (Xm, Ym) Where x; € R" is the i*" feature vector
and y; € {-1,+1}

@ Here A := YX, i.e., A,j = y,'(X,')j

Note that A\* is a linear separator of the data if and only if AA* >0

Assume for convenience that for every column A;, —A; is also a column
of A
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AdaBoost: Second Problem of Interest

A, :={x€R":e"x =1 x>0} is the standard simplex in R”
Recall that \* is a linear separator of the data if and only if AX* >0
The margin of a classifier A € R” is:

- ; i T
p(A) = ie{rlrj.l.r.],m} (AX); = min - w AX

It makes sense to look for a classifier with large margin, i.e., to solve:

M: p = max p(A) .
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Dual of the Maximum Margin Problem

The "edge” of a vector of weights on the data, w € A, is:

f(w):= max w'A; = max w’ A\
jE{L,en} AEA,

The (linear programming) dual of the maximum margin problem is the
problem of minimizing the edge:

E: f:= mn f
Sk, 1)

AdaBoost is three algorithms:

@ A boosting method based on a scheme for (multiplicatively)
updating a vector of weights on the data

@ Greedy Coordinate Descent applied to minimize the log-exponential
loss function

@ A version of the Mirror Descent method applied to the above

problem E 81



Computational Guarantees for AdaBoost

Theory for Greedy Coordinate Descent and Mirror Descent leads to
computational guarantees for AdaBoost:

Step-Size Strategy Separable Data Non-Separable Data
Margin Bound Gradient Bound Loss Bound
* o p(AkFL min v & L8k —Lf
pT PO L min VLGl | LY~ 1
. _ Sk 2In(m) 8 In(m)?
edge rule: ag = |VL(A) o sy 7(NSEP;*)21(
. 1 14r 2in(m) 81n(m)?
line-search: ay = 51In (1_’k ) T 7(NSEPI*)2k
“constant:” aj = ZLIKT) 72}:&'1') 2In(m) L"JET)
fori =0, s k
| |
N o _ /T ") (2 pin(k-+1)] /) (2.4 ini1))
ptive: k= K+ 2(Vk+2—1) 2(Vk+2—1)

NSEP7 is a “non-separability condition number” for log-exponential loss 82





