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How can optimization inform statistics (and machine

learning)?

Paper in preparation (this talk):

Condition Number Analysis of Logistic Regression, and its Implications
for First-Order Solution Methods

A “cousin” paper of ours:

A New Perspective on Boosting in Linear Regression via Subgradient
Optimization and Relatives



Outline

@ Optimization primer: some “old” results and new observations for
the family of steepest descent algorithms

@ Logistic regression perspectives: statistics and machine learning

@ A pair of condition numbers for the logistic regression problem:
e when the sample data is non-separable:
@ a condition number for the degree of non-separability of the
dataset
e informing the convergence guarantees of steepest descent
family
@ guarantees on reaching linear convergence (thanks to Bach)

e when the sample data is separable:
@ a condition number for the degree of separability of the
dataset
@ informing convergence guarantee to deliver an approximate
maximum margin classifier
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Primer on Steepest Descent in a Given Norm

Some Old and New Results for Steepest Descent in
a Given Norm
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Steepest Descent in a leen Norm (SDGN)

F* = min F(x)
X
st. xeRP
Let || - || be the given norm on the variables x € R

Steepest Descent in a Given Norm (SDGN)

Initialize at x> € RP, k < 0

At iteration k :
@ Compute gradient VF(x)
@ Compute d* « argmaxs{VF(x¥)"d : ||d|| <1}
© Choose step-size ay

Q@ Set xKt1 « xk — qdk
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Greedy Coordinate Descent = /1-Steepest Descent

F* = min F(x)
X
s.t. xeRP

Let |- ][ =11

Steepest Descent method in the #;-norm

Initialize at xX° € RP, k < 0

At iteration k :
@ Compute gradient VF(x¥)
@ Compute direction: d* < argmax{VF(x*)7d : ||d|; < 1}
© Choose step-size ay

@ Set xFt1 « xk — ay d¥
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Greedy Coordinate Descent = /1-Steepest Descent, cont.

d* € arg max {VF(x")"d
gudnlgl{ ()"}
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Gradient Descent = /»-Steepest Descent

F* = min F(x)
X
s.t. xeRP

Let |- ][ =12

Steepest Descent method in the £>-norm

Initialize at xX° € RP, k < 0

At iteration k :
@ Compute gradient VF(x¥)
@ Compute direction: d* < argmax{VF(x)7d : ||d|> < 1}
© Choose step-size ay

@ Set xFt1 « xk — ay d¥
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Gradient Descent = /,-Steepest Descent, cont.

d* € arg max {VF(x")"d
rgudnz)él{ ()7 d}
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Computational Guarantees for Steepest Descent family

st. x€RP

F* = min F(x) J

Assume F(-) is convex and VF(-) is Lipschitz with parameter Lg:

IVF(x) = VF()|l« < Lellx—y]| forall x,y € RP

| - ||« is the usual dual norm

Two sets of interest:

So = {x € RP: F(x) < F(x%)} is the level set of the initial point x°
S* :={x € RP: F(x) = F*} is the set of optimal solutions

10
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Metrics for Evaluating Steepest Descent family, cont.

= {x € RP: F(x) < F(x°)} is the level set of the initial point x°
S* :={x € RP: F(x) = F*} is the set of optimal solutions

Distg 1= max min ||x — x*|| J
ESp x*E€S™*

(In high-dimensional machine learning problems, S* can be very big) 11
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Computational Guarantees for Steepest Descent family

Distg := max min ||x — x*||
XESy x*E€S*

Theorem: Objective Function Value Convergence (essentially [Beck and

Tetruashvil 2014], [Nesterov 2003])

If the step-sizes are chosen using the rule:

F(x¥)|I,
ak:M forall k >0,

then for each k > 0 the following inequality holds:

2LF(DiSt0)2 < 2LF(DiSt0)2

F(x¥)— F* < =—
() T KO+ k k

. 2LF(DiSt0)2

20
where KV := FOO) — F
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Computational Guarantees for Steepest Descent famlly,
cont.

Theorem: Gradient Norm and Iterate Norm Convergence

If the step-sizes are chosen using the rule:

Vel

L forall k >0,

then for each k > 0 the following inequality holds:

2(F(x0) — F
Ik =) < Vi 2EED=FD
F

and

2L (F(x0) — F~)
k+1

_min[VFCL <

€{0,....k}

13
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Logistic Regression

Logistic Regression

° statistics perspective

° machine learning perspective

14
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Logistic Regression Statistics Perspective

Example: Predicting Parole Violation

Predict P(violate parole) based on age, gender, time served, offense
class, multiple convictions, NYC, etc.

Violator Male Age TimeServedClass Multiple InCity
1

1 0 149.4 3.15 D 0

2 1 126.0 5.95 D 1 0
3 0 124.9 2.25 D 1 0
4 0 152.1 29.22 A 0 0
5 0 135.9 12.78 A 1 1
6 0 125.9 1.18 C 1 1
7 0 119.0 0.54 D 0 0
8 0 143.2 1.07 C 0 1
9 0 131.6 1.17 E 0 0
10 0 140.7 4.64 B 1 1
11 0 153.9 21.61 A 0 1
12 0 1 28.5 3.23 D 1 0
13 0 136.1 3.71 D 0 1
14 0 148.8 1.17 D 0 0
15 0 137.6 4.62 C 0 0
16 0 142.5 1.75 D 0 1
6098 0 155.0 0.72 E 0 0
6099 0 149.6 29.88 A 0 1
6100 0 122.4 2.85 D 0 1
6101 0 144.8 1.76 D 1 0
6102 0 0 45.3 1.03 E 0 0

15
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Logistic Regression for Prediction

Y € {—1,1} is a Bernoulli random variable:

X = (x1,...,Xp) € RP is the vector of independent variables
P(Y = 1) depends on the values of the independent variables xi, ..., x,

Logistic regression model is:

1

PY=11x) = 1 m J

16
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Logistic Regression for Prediction, continued

Logistic regression model is:

P(Y=1|x) =

Data records are (x;,y;), i=1,...,n

Violator Male Age TimeServed Class Multiple InCity
149.4 3.15 0

1 o 9 1 D 1
2 1 126.0 5.95 D 1 0
3 o 124.9 2.25 D 1 0
4 0 152.1 29.22 A [ [
5 0 135.9 12.78 A 1 1
6 0 125.9 1.18 C 1 1
7 0 119.0 0.54 D [ 0
8 0 143.2 1.07 C 0 1
9 0 131.6 1.17 E 0 0
10 0 140.7 4.64 B 1 1
11 0 153.9 21.61 A 0 1
12 0 128.5 3.23 D 1 0
13 0 136.1 3.71 D 0 1
14 [ 148.8 1.17 D 0 0
15 0 137.6 4.62 C 0 0
16 o 142.5 1.75 D 0 1
6098 o 155.0 0.72 E 0 0
6099 [ 149.6 29.88 A 0 1
6100 [ 122.4 2.85 D 0 1
6101 [ 144.8 1.76 D 1 0
6102 o 0 45.3 1.03 E 0 0

Let us construct an estimate of 3 based on the data (x;,y;), i=1,...,n 17
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Logistic Regression: Maximum Likelihood Estimation

1 1
- - 1- —
mé'ax <J:[1 1+ eﬁTX,.> ( H ( 1+ eﬁTx,-))

yi=—1

. 1
= m;x (H 1 n e—}’iﬁTXi>

i=1

= mﬁin % i In (1 + e_y’ﬂTX") =: Ly(B)

i=1

18
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Logistic Regression: Maximum Likelihood Optimization

Problem

Logistic regression optimization problem is:

N mﬁi" Lo(B) := 5 iy In(L + exp(—yiB7 xi))
st. BERP

Loss

yBTx

The logistic term is a 1-smoothing of f(a) = max{0, —a} 19
(= shifted “hinge loss")
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Properties of the Logistic Loss Function

Ly = min La(B) := 5 30, In(1 + exp(—yiBTxi)) J

Proposition: Lipschitz constant of the gradient of L,(5)

Via(-)is L=k =||X||?,-Lipschitz:

IVLA(B) = VLa(B)llx < 25 IXI2018 = Bl

where [X|..2 == max X3

20
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Properties of the Logistic Loss Function, continued

Ly = mﬁin Ln(B) == 237 1 In(1+ exp(—yiBT X))
st. BERP
@ L,(-) is convex
o LF>0
@ If L% =0, then the optimum is not attained (something is “wrong”

or “very wrong")

@ We will see later that “very wrong” is actually very good....

For 8% := 0 it holds that L,(3°) = In(2)

21
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Logistic Regression: Machine Learning Perspective

Logistic Regression: Machine Learning Perspective

22
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Logistic Regression as Binary Classification

Data: (x;,y;) € RP x {-1,1}, i=1,...,n

@ x = (x1,...,xp) € RP is the vector of features (ind. variables)

@ y € {—1,1} is the response/label

Task: predict y based on the linear function 37 x

@ 3 € RP are the model coefficients

Loss function: ¢(y, 37 x) represents the loss incurred when the truth is y
but our classification /prediction was based on 37 x

Loss Minimization Problem: m|n - Zf(y,,ﬂ X;)

23
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Loss Functions for Binary Classification

Some common loss functions used for binary classification
@ 0-1loss: £(y,B7x):=1(yB"x < 0)
@ Hinge loss: £(y, 37x) := max(0,1 - y37x)
@ Logistic loss: £(y,37x) := In(1 + exp(—yB7x))

o1

Loss

Hinge
= Logistic

3 2 Rl 0 1 2 3

Margin

Here “Margin” = yB7 x 24



Logistic Regression
00000000000e0000

Advantages of Logistic Loss Function

Why use the logistic loss function for classification?
@ Computational advantages: convex, smooth
@ Fits previous statistical model of conditional probablity:
_ _ 1
P(Y =y | X) = tremt55

@ Makes sense when the data is non-separable

@ Robust to misspecification of class labels

25
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Logistic Regression Problem of Interest, continued

Alternate version of optimization problem adds regularization and/or
sparsification:

L = min La(f):= 5 21 In(1 + exp(=yiBTxi)) +AlIB],
st. BERP
1Bllo < k
Aspirations:

@ Good predictive performance on new (out of sample) observations

@ Models that are more interpretable (e.g., sparse)

26
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Computational Experiment: Greedy Coordinate Descent

()

Consider /1 steepest descent = Greedy Coordinate Descent (GCD)
for Logistic Regression

27
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Greedy Coordinate Descent for Logistic Regression

Greedy Coordinate Descent for Logistic Regression

Initialize at 3% < 0,k < 0

At iteration k > 0:
© Compute VL,(8)
@ Compute jx € arg max _|VL,(8%);|
Jj€{1,...,p}

© Set B¥tT « Bk — aysgn(VL,(6%);) e,

Why use Greedy Coordinate Descent for Logistic Regression?
@ Scalable and effective when n, p > 0 and maybe p > n
@ GCD performs variable selection

@ GCD imparts implicit regularization

@ Just one tuning parameter (number of iterations) 28
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Implicit Regularization and Variable Selection Properties

Artificial example: n = 1000, p = 100, true model has 5 non-zeros

Coefficient Index

Logistic Loss Value
.
2
Coefficient Value

Iteration Iteration

Compare with explicit regularization schemes (¢1, {5, etc.)
29
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How Can SDGN Inform Logistic Regression?

Some questions:

@ How do the computational guarantees for the Steepest Descent
family specialize to the case of Logistic Regression?

@ What role does problem structure/conditioning play in these
guarantees?

@ Can we say anything further about the convergence properties of the
Steepest Descent family in the special case of Logistic Regression?

30
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Elementary Properties of the Logistic Loss Function

Ly = mﬂin Lao(B) =137 1 In(1 + exp(—yiBT X)) J

Logistic regression “ideally” seeks /3 for which y;x;" 3 > 0 for all i :
0y, >0=x'5>0
0y <0=x'8<0

Loss
H

‘‘‘‘‘‘‘‘

yB"x

31
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Geometry of the Data: Non-Separable and Separable Data

(b) Very Separable Data

(c) Mildly Non-Separable Data (d) Mildly Separable Data

32
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Separable and Non-Separable Data

Separable Data

The data is separable if there exists 5 for which

vi-(B)'x; >0 foralli=1,...,n

Non-Separable Data

The data is non-separable if it is not separable, namely, every 3 satisfies

vi-(B)"x; <0 forsomeic{l,...,n}

33
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Separable Data

Ly = mﬁin Lo(B) == 237 1 In(1 + exp(—yiBTx;)) J

The data is separable if there exists 5 for which

}/i'(B)TX;>O forall i=1,...,n

If B separates the data, then L,(63) — 0 (= L%) as § — +o0

Perhaps trying to optimize the logistic loss function is unlikely to be
effective at finding a “good” linear classifier ....

34
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Separable and Non-Separable Data

(a) Separable (b) Non-Separable

35
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Results in the Non-Separable Case

Results in the Non-Separable Case

36
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Non-Separable Data and Problem Behavior/Conditioning

Let us quantify the degree of non-separability of the data.

(a) Very non-separable data (b) Mildly non-separable data

We will relate this to problem behavior/conditioning....

37
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Non-Separability Condition Number DegNSEP*

Definition of Non-Separability Condition Number DegNSEP*
DegNSEP* := min LS iBTx]

BERP n

st. 1Al =1

DegNSEP™ is the least average misclassification error (over all
normalized classifiers)

DegNSEP™* > 0 if and only if the data is strictly non-separable

38
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Non-Separability Measure DegNSEP*

* . . 1 n AT 1—
DegNSEP™ = min Iy BT x]

st. 1Al =1

(a) DegNSEP” is large (b) DegNSEP* is small

39
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DegNSEP” :=  min 2 o alyiB X
st. Bl =1

<

Theorem: Non-Separability and Sizes of Optimal Solutions

Suppose that the data is non-separable and DegNSEP* > 0. Then

© the logistic regression problem LR attains its optimum,

@ for every optlmal solution 5* of LR it holds that

18 < n(2)

d
DegNSEP” = DegNSEP™ * "

_ La(B)
< ———— .
© for any f it holds that ||8]| < DogNSEP”

40
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Computatlonal Guarantees for Steepest Descent famlly:
Non-Separable Case

Theorem: Computational Guarantees for Steepest Descent family:
Non-Separable Case

Consider the SDGN applied to the Logistic Regression problem with
k
szﬂ—)”* for all k > 0, and suppose that the data is
2
non-separable. Then for each k > 0 it holds that:

step-sizes ay 1=

] e 2(In(2))?[1X]1?
(i) (training error): L,(8%) —L; < %

o - . : f (In(2)—L3)
(i) (gradient norm): _min VL5, < [X].2/GFe?
(iii) (regularization): ||3%|| < \/E(W) 8n(In(2) — Ly)

41
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Computatlonal Guarantees for Steepest Descent famlly:
Non-Separable Case

Theorem: Computational Guarantees for Steepest Descent family:
Non-Separable Case

Consider the SDGN applied to the Logistic Regression problem with
k
szﬂ—)”* for all k > 0, and suppose that the data is
2
non-separable. Then for each k > 0 it holds that:

step-sizes ay 1=

] e 2(In(2))?[1X]1?
(i) (training error): L,(8%) —L; < %

. . . i In(2)—L;
(i) (gradient norm): __min _ [[VLo(3)]. < |X].2 et

(iii) (regularization): ||3%|| < \/E(W) 8n(In(2) — Ly)

41
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Reaching Linear Convergence

Reaching Linear Convergence using Steepest
Descent with a Given Norm for Logistic Regression

For logistic regression, does SDGN exhibit linear convergence?

42
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Some Definitions/Notation

Definitions:

e R:= {max |x:|l2 (maximum ¢» norm of the feature vectors)
i€{1,...,n

@ H(/5*) denotes the Hessian of L,(-) at an optimal solution 5*

@ Apmin(H(B8*)) denotes the smallest non-zero (and hence positive)
eigenvalue of H((3*)

@ NormRatio := maxgo ||B]l/8l)2

43
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Reachlng Linear Convergence of Steepest Descent famlly
for Logistic Regression

Theorem: Reaching Linear Convergence of Steepest Descent family for
Logistic Regression

Consider SDGN applied to the Logistic Regression problem with

_ 4n[VLy(8Y)]
XP2

non-separable. Define:

step-sizes ay : for all k > 0, and suppose that the data is

= 9m2(DegNSEP*)2 A pmin (H(5%))2

L. 16In(2)?||X]|*, R*(NormRatio)?

Then for all k > k, it holds that:

k—
N A o pmln( (ﬂ ))
La(B%) — L < (La(B%) — L}) (1 - [1X]|?,(NormRatio)? >

44
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Reaching Linear Convergence of Steepest Descent family

for Logistic Regression, cont.

Some comments:

@ Proof relies on (a slight generalization of) the “generalized
self-concordance” property of the logistic loss function due to [Bach
2014]

@ Furthermore, we can bound:

Apmin(H(B")) = 2 Xpmin(XTX) ex <——'B(ei)£)squf)

@ As compared to results of a similar flavor for other algorithms, here
we have an exact characterization of when the linear convergence
“kicks in” and also what the rate of linear convergence is
guaranteed to be

@ Q: Can we exploit this generalized self-concordance property in

other ways? (still ongoing ...)
45



Non-Separable Case
0000000000e000000

DegNSEP™ and “Perturbation to Separability”

* 2 1 n T,.1—
DegNSEP™ = min 2 i lyiB’ xi]

st. Bl=1

Theorem: DegNSEP* is the “Perturbation to Separability”

DegNSEP* = inf 1377 ||Axi|.
o > Axl,l.r?ﬂAXn nzl:l || X/”

s.t. (xi + Ax;, y;),i =1,...,n are separable

46
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lllustration of Perturbation to Separability

47
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Results for Some other Methods

Results for Some other Methods

48
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Standard Accelerated Gradient Method (AGM)

P: F*:= minimumx F(x)

st. xeRP

Lipschitz gradient: ||[Vf(y) — Vf(x)|l2 < L|ly — x]|2 for all x,y € R?

Accelerated Gradient Method (AGM)

Given x° € R? and 2° ,and i < 0. Deflne step- 5|ze parameters 6; € (0, 1]

recursively by 6y := 1 and 0,+1 satisfies = s =

49,.Jr1 011 02 .
At iteration k:
@ Update :  y* < (1 — 0x)x* + Oi 2"
X yf = 1VE(Y9)

k1 ok GT((XHI 9

49
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Computational Guarantees for Accelerated Gradient

Method (AGM) for Logistic Regression

Theorem: Computational Guarantees for Accelerated Gradient Method
(AGM) for Logistic Regression

Consider the AGM applied to the Logistic Regression problem initiated at
B% :=0, and suppose that the data is non-separable. Then for each
k > 0 it holds that:

2(In(2))?|1X|3 2
ni . k _ | * < )
(training error): L,(8*)— L < n-(k+1)2- (DegNSEP")?

50
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AGM with Simple Re Starting (AGM-SRS)

Assume that 0 < F* := minimum, F(x)

Accelerated Gradient Method with Simple Re-Starting (AGM-SRS)

Initialize with x° € R .
Setx1,0<—x° i1

At outer iteration i:

@ Initialize inner iteration. j < 0
@ Run inner iterations. At inner iteration J:

if FO0) S 08 then:
F(X,‘,o)

Xij+1 <= AGM(F(-), xi0, j+1),
Jj < Jj+1, and Goto step 2.

Else xj41,0 ¢ xij, i < i+ 1, and Goto step 1.

“xjj = AGM(F(-), xi,0, j)" denotes assigning to x;; the jth iterate of AGM
applied with objective function F(-) using the initial point x;o € RP 51
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Computatlonal Guarantee for AGM with Slmple
Re-Starting for Logistic Regression

Computational Guarantee for Accelerated Gradient Method with Simple
Re-Starting for Logistic Regression

Consider the AGM with Simple Re-Starting applied to the Logistic
Regression problem initiated at 3° := 0, and suppose that the data is
non-separable. Within a total number of computed iterates k that does
not exceed

5.8]X|l2,2 N 8.4 X]|22 - Ly
\/n - DegNSEP”* v/n-DegNSEP* - (/2 ’

the algorithm will deliver an iterate ¥ for which

L.(B) - L < ¢.

52
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Results in the Separable Case

Results in the Separable Case
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Separable Data and Problem Behavior/Conditioning

Let us quantify the degree of separability of the data.

(a) Very separable data (b) Barely separable data

We will relate this to problem behavior/conditioning....

54
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Separability Condition Number DegSEP*

Definition of Non-Separability Condition Number DegSEP*

DegSEP* := i BT x;
°g max o fpin LB
S I8l <1

DegSEP* maximizes the minimal classification value [y;37 x;] (over all
normalized classifiers)

DegSEP™ is simply the “maximum margin” in machine learning parlance

DegSEP* > 0 if and only if the data is separable

55
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Separability Measure DegSEP*

DegSEP™ := max min  [y;87 xi]

BERP ie{1,...,n}
st. Bl <1

(a) DegSEP™ is large (b) DegSEP™ is small

56
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DegNSEP* and Problem Behavior/Conditioning

Ly = min La(B) := 5 3270 In(1 + exp(—yiBTxi))
DegSEP* := i BT x;
°g max o fpin LBt
st. 1Bl <1

Theorem: Separability and Non-Attainment

Suppose that the data is separable. Then DegSEP* > 0, L* =0, and LR
does not attain its optimum.

v

Despite this, it turns out that the Steepest Descent family is reasonably
effective at finding an approximate margin maximizer as we shall shortly
see.... -
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Margin function p(53)

Margin function p(f)
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Computatlonal Guarantees for Steepest Descent famlly
Separable Case

Theorem: Computational Guarantees for Steepest Descent family: Separable
Case

Consider SDGN applied to the Logistic Regression problem with step-sizes

M for all kK > 0, and suppose that the data is separable.

Qi =
< B

37n||X||2,2
_ 7 [ (DegSEP")?
normalized iterate 8' := 3'/||8'| satisfies

(i) (margin bound): there exists i < { J for which the

.18 - DegSEP*
—_—

p(B) >

(ii) (shrinkage): ||5¥|| < ﬁ(m) 8nin(2)

0 In
(iii) (gradient norm): .m ||VL,,( Me < IXI-2y/ s

.....

59
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Computatlonal Guarantees for Steepest Descent famlly
Separable Case

Theorem: Computational Guarantees for Steepest Descent family: Separable
Case

Consider SDGN applied to the Logistic Regression problem with step-sizes

M for all kK > 0, and suppose that the data is separable.

Qi =
< B

37n||X||2,2
_ 7 [ (DegSEP")?
normalized iterate 8' := 3'/||8'| satisfies

(i) (margin bound): there exists i < { J for which the

.18 - DegSEP*
—_—

p(B) >

(ii) (shrinkage): ||5¥|| < \/E(m) 8nin(2)

0 In
(iii) (gradient norm): .m ||VL,,( Me < X2/ s

.....
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DegSEP™ and “Perturbation to Non-Separability”

DegSEP* := i BT x;
g s emin Db x]
st.  [IBll<1

Theorem: DegSEP™ is the “Perturbation to Non-Separability”

DegSEP™* = inf max _ ||Ax;|«

Axy,...,Ax, i€{l,...,n}

s.t. (xi + Ax;,yi),i =1,...,n are non-separable

60
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lllustration of Perturbation to Non-Separability

61
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Other Issues

Some other topics not mentioned (still ongoing):

@ Other first-order methods for logistic regression (accelerated
gradient descent, randomized methods, etc.

@ high-dimensional regime p > n, define DegNSEP} and DegSEP}
for restricting S to satisfy ||8]lo < k

@ Numerical experiments comparing methods

@ Other...

62
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Summary

@ Some old and new results for Steepest Descent in a Given Norm (SDGN)

@ Analyizing SDGN for Logistic Regression: separable/non-separable cases

@ Non-Separable case

o condition number DegNSEP*
e computational guarantees for SGDN including reaching linear
convergence

@ Separable case

o condition number DegSEP*
e computational guarantees for SGDN including computing an
approximate maximum margin classifier

63
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